Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 188730 by universe last updated on 06/Mar/23

  let p(x) = (5/3)−6x−9x^2  and Q(y) = −4y^2 −4y+((13)/2)  if there exist unique pair of real number   (x,y) such that p(x)×Q(y) = 20 then   find the value 6x+10y = ?

$$\:\:\mathrm{let}\:{p}\left({x}\right)\:=\:\frac{\mathrm{5}}{\mathrm{3}}−\mathrm{6}{x}−\mathrm{9}{x}^{\mathrm{2}} \:\mathrm{and}\:{Q}\left({y}\right)\:=\:−\mathrm{4}{y}^{\mathrm{2}} −\mathrm{4}{y}+\frac{\mathrm{13}}{\mathrm{2}} \\ $$$$\mathrm{if}\:\mathrm{there}\:\mathrm{exist}\:\mathrm{unique}\:\mathrm{pair}\:\mathrm{of}\:\mathrm{real}\:\mathrm{number} \\ $$$$\:\left({x},{y}\right)\:\mathrm{such}\:\mathrm{that}\:{p}\left({x}\right)×{Q}\left({y}\right)\:=\:\mathrm{20}\:\mathrm{then} \\ $$$$\:\mathrm{find}\:\mathrm{the}\:\mathrm{value}\:\mathrm{6}{x}+\mathrm{10}{y}\:=\:? \\ $$

Commented by mr W last updated on 06/Mar/23

p(x)×q(y)=20 has infinite solutions!

$${p}\left({x}\right)×{q}\left({y}\right)=\mathrm{20}\:{has}\:{infinite}\:{solutions}! \\ $$

Commented by Frix last updated on 07/Mar/23

@universe:  You claim the anwer is 3, this means  6x+10y=3 ⇔ y=((3(1−2x))/(10))  Inserting in p(x)×Q(y)=20 gives  x^4 −2x^3 −((1165x^2 )/(216))−((581x)/(324))−((1765)/(1944))=0  Which has no useable exact solutions  x_1 ≈−1.35916283     x_2 ≈3.63726315  x_(3, 4) ≈−.139050158±.405363829i  ...this makes no sense or does it?

$$@\mathrm{universe}: \\ $$$$\mathrm{You}\:\mathrm{claim}\:\mathrm{the}\:\mathrm{anwer}\:\mathrm{is}\:\mathrm{3},\:\mathrm{this}\:\mathrm{means} \\ $$$$\mathrm{6}{x}+\mathrm{10}{y}=\mathrm{3}\:\Leftrightarrow\:{y}=\frac{\mathrm{3}\left(\mathrm{1}−\mathrm{2}{x}\right)}{\mathrm{10}} \\ $$$$\mathrm{Inserting}\:\mathrm{in}\:{p}\left({x}\right)×{Q}\left({y}\right)=\mathrm{20}\:\mathrm{gives} \\ $$$${x}^{\mathrm{4}} −\mathrm{2}{x}^{\mathrm{3}} −\frac{\mathrm{1165}{x}^{\mathrm{2}} }{\mathrm{216}}−\frac{\mathrm{581}{x}}{\mathrm{324}}−\frac{\mathrm{1765}}{\mathrm{1944}}=\mathrm{0} \\ $$$$\mathrm{Which}\:\mathrm{has}\:\mathrm{no}\:\mathrm{useable}\:\mathrm{exact}\:\mathrm{solutions} \\ $$$${x}_{\mathrm{1}} \approx−\mathrm{1}.\mathrm{35916283}\:\:\:\:\:{x}_{\mathrm{2}} \approx\mathrm{3}.\mathrm{63726315} \\ $$$${x}_{\mathrm{3},\:\mathrm{4}} \approx−.\mathrm{139050158}\pm.\mathrm{405363829i} \\ $$$$...\mathrm{this}\:\mathrm{makes}\:\mathrm{no}\:\mathrm{sense}\:\mathrm{or}\:\mathrm{does}\:\mathrm{it}? \\ $$

Answered by mehdee42 last updated on 06/Mar/23

−7

$$−\mathrm{7} \\ $$

Commented by universe last updated on 06/Mar/23

answer is 3

$${answer}\:{is}\:\mathrm{3} \\ $$

Commented by mehdee42 last updated on 06/Mar/23

point of max_f  isA= (−(1/3),(8/3))  point of max_q  is B=(−(1/2),(8/3))  therfore if f( x).q(y)=20 then there are unique x_A =−(1/3) , y=−(1/2)  ⇒10x+6y=−7

$${point}\:{of}\:{max}_{{f}} \:{isA}=\:\left(−\frac{\mathrm{1}}{\mathrm{3}},\frac{\mathrm{8}}{\mathrm{3}}\right) \\ $$$${point}\:{of}\:{max}_{{q}} \:{is}\:{B}=\left(−\frac{\mathrm{1}}{\mathrm{2}},\frac{\mathrm{8}}{\mathrm{3}}\right) \\ $$$${therfore}\:{if}\:{f}\left(\:{x}\right).{q}\left({y}\right)=\mathrm{20}\:{then}\:{there}\:{are}\:{unique}\:{x}_{{A}} =−\frac{\mathrm{1}}{\mathrm{3}}\:,\:{y}=−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{10}{x}+\mathrm{6}{y}=−\mathrm{7} \\ $$

Commented by mehdee42 last updated on 06/Mar/23

?

$$? \\ $$

Answered by Frix last updated on 06/Mar/23

p(x)×Q(y)=20  ((5/3)−6x−9x^2 )(((13)/2)−4y−4y^2 )−20=0  ⇒       (1)     y=−(1/2)±((3(√(10))(3x+1))/(4(√(27x^2 +18x−5))))                 ⇒ x<−((3+2(√6))/9)∨((−3+2(√6))/9)<x       (2)     x=−(1/3)±((4(√3)(2y+1))/(9(√(8y^2 +8y−13))))                 ⇒ y<−((2+(√(30)))/4)∨y((−2+(√(30)))/4)<y  ⇒ Number of real solutions is infinite  [Maybe you mean “rational” instead of “real”?]

$${p}\left({x}\right)×{Q}\left({y}\right)=\mathrm{20} \\ $$$$\left(\frac{\mathrm{5}}{\mathrm{3}}−\mathrm{6}{x}−\mathrm{9}{x}^{\mathrm{2}} \right)\left(\frac{\mathrm{13}}{\mathrm{2}}−\mathrm{4}{y}−\mathrm{4}{y}^{\mathrm{2}} \right)−\mathrm{20}=\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\:\:\:\:\:\left(\mathrm{1}\right)\:\:\:\:\:{y}=−\frac{\mathrm{1}}{\mathrm{2}}\pm\frac{\mathrm{3}\sqrt{\mathrm{10}}\left(\mathrm{3}{x}+\mathrm{1}\right)}{\mathrm{4}\sqrt{\mathrm{27}{x}^{\mathrm{2}} +\mathrm{18}{x}−\mathrm{5}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:{x}<−\frac{\mathrm{3}+\mathrm{2}\sqrt{\mathrm{6}}}{\mathrm{9}}\vee\frac{−\mathrm{3}+\mathrm{2}\sqrt{\mathrm{6}}}{\mathrm{9}}<{x} \\ $$$$\:\:\:\:\:\left(\mathrm{2}\right)\:\:\:\:\:{x}=−\frac{\mathrm{1}}{\mathrm{3}}\pm\frac{\mathrm{4}\sqrt{\mathrm{3}}\left(\mathrm{2}{y}+\mathrm{1}\right)}{\mathrm{9}\sqrt{\mathrm{8}{y}^{\mathrm{2}} +\mathrm{8}{y}−\mathrm{13}}} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\Rightarrow\:{y}<−\frac{\mathrm{2}+\sqrt{\mathrm{30}}}{\mathrm{4}}\vee{y}\frac{−\mathrm{2}+\sqrt{\mathrm{30}}}{\mathrm{4}}<{y} \\ $$$$\Rightarrow\:\mathrm{Number}\:\mathrm{of}\:\mathrm{real}\:\mathrm{solutions}\:\mathrm{is}\:\mathrm{infinite} \\ $$$$\left[\mathrm{Maybe}\:\mathrm{you}\:\mathrm{mean}\:``\mathrm{rational}''\:\mathrm{instead}\:\mathrm{of}\:``\mathrm{real}''?\right] \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com