Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 50363 by prof Abdo imad last updated on 16/Dec/18

let p ∈K_n [x] snd A and H two rlements of K[x]  1) prove that p(A(x)+H(x))=Σ_(k=0) ^n ((p^((k)) (A(x)))/(k!)).(H(x))^k   2)find the condition that p(A(x)+H(x))is  divided by H(x)≠0  3) if p(x)≠c prove  that p(p(x))−x is divided  by p(x)−x.

$${let}\:{p}\:\in{K}_{{n}} \left[{x}\right]\:{snd}\:{A}\:{and}\:{H}\:{two}\:{rlements}\:{of}\:{K}\left[{x}\right] \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:{p}\left({A}\left({x}\right)+{H}\left({x}\right)\right)=\sum_{{k}=\mathrm{0}} ^{{n}} \frac{{p}^{\left({k}\right)} \left({A}\left({x}\right)\right)}{{k}!}.\left({H}\left({x}\right)\right)^{{k}} \\ $$$$\left.\mathrm{2}\right){find}\:{the}\:{condition}\:{that}\:{p}\left({A}\left({x}\right)+{H}\left({x}\right)\right){is} \\ $$$${divided}\:{by}\:{H}\left({x}\right)\neq\mathrm{0} \\ $$$$\left.\mathrm{3}\right)\:{if}\:{p}\left({x}\right)\neq{c}\:{prove}\:\:{that}\:{p}\left({p}\left({x}\right)\right)−{x}\:{is}\:{divided} \\ $$$${by}\:{p}\left({x}\right)−{x}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com