Question Number 29461 by prof Abdo imad last updated on 09/Feb/18 | ||
![]() | ||
$${let}\:{give}\:\:{u}_{{n}} =\:\frac{\mathrm{1}}{\sqrt{{n}}}\left(\:\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}}}\:+\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:+...+\frac{\mathrm{1}}{\sqrt{{n}}}\right)\: \\ $$$${find}\:{lim}_{{n}\rightarrow+\infty} {u}_{{n}\:} . \\ $$ | ||
Commented by prof Abdo imad last updated on 13/Feb/18 | ||
![]() | ||
$${we}\:{have}\:{u}_{{n}} =\frac{\sqrt{{n}}}{{n}}\left(\:\:\frac{\mathrm{1}}{\sqrt{\mathrm{1}}}\:+\:\frac{\mathrm{1}}{\sqrt{\mathrm{2}}}\:+.....+\frac{\mathrm{1}}{\sqrt{{n}}}\right) \\ $$$$=\:\frac{\mathrm{1}}{{n}}\left(\:\:\frac{\mathrm{1}}{\sqrt{\frac{\mathrm{1}}{{n}}}}\:+\frac{\mathrm{1}}{\sqrt{\frac{\mathrm{2}}{{n}}}}\:+....+\frac{\mathrm{1}}{\sqrt{\frac{{n}}{{n}}}}\right) \\ $$$$=\:\frac{\mathrm{1}}{{n}}\sum_{{k}=\mathrm{1}} ^{{n}} \:\:\frac{\mathrm{1}}{\sqrt{\frac{{k}}{{n}}}}\:{so}\:{u}_{{n}\:} \:{is}\:{a}\:{Rieman}\:{sum}\:{and} \\ $$$${lim}_{{n}\rightarrow\infty} \:{u}_{{n}} =\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\:\:\:\frac{{dx}}{\sqrt{{x}}}\:\:=\left[\mathrm{2}\sqrt{{x}\:}\right]_{\mathrm{0}} ^{\mathrm{1}} =\:\mathrm{2}\:. \\ $$ | ||