Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 31038 by abdo imad last updated on 02/Mar/18

let give α ∈]−π ,π[  1)prove that  sin^2 α −2(1+cosα) =−4cos^4 ((α/2))  2)solve inside C  z^2  −2z sinα +2(1+cosα)=0 find  the module and arg of the roots.

$$\left.{let}\:{give}\:\alpha\:\in\right]−\pi\:,\pi\left[\right. \\ $$$$\left.\mathrm{1}\right){prove}\:{that}\:\:{sin}^{\mathrm{2}} \alpha\:−\mathrm{2}\left(\mathrm{1}+{cos}\alpha\right)\:=−\mathrm{4}{cos}^{\mathrm{4}} \left(\frac{\alpha}{\mathrm{2}}\right) \\ $$$$\left.\mathrm{2}\right){solve}\:{inside}\:{C}\:\:{z}^{\mathrm{2}} \:−\mathrm{2}{z}\:{sin}\alpha\:+\mathrm{2}\left(\mathrm{1}+{cos}\alpha\right)=\mathrm{0}\:{find} \\ $$$${the}\:{module}\:{and}\:{arg}\:{of}\:{the}\:{roots}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com