Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 116556 by Bird last updated on 04/Oct/20

let g(x)=ln(cos(ax))  developp g at fourier serie  (a real given)

$${let}\:{g}\left({x}\right)={ln}\left({cos}\left({ax}\right)\right) \\ $$$${developp}\:{g}\:{at}\:{fourier}\:{serie} \\ $$$$\left({a}\:{real}\:{given}\right) \\ $$

Answered by maths mind last updated on 05/Oct/20

let  f(t)=ln(cos(t))  t∈]−(π/2),(π/2)[,cos(t)=((e^(it) +e^(−it) )/2)  f(t)=ln(((e^(it) +e^(−it) )/2))=ln(1+e^(2it) )−ln(2e^(it) )  =Σ_(k≥0) (((−1)^k e^(2i(k+1)t) )/((k+1)))−ln(2)−it  f(t)=f(−t)⇒f(t)=((f(t)+f(−t))/2)  ⇒f(t)=(1/2)[Σ_(k≥0) (((−1)^k )/((k+1)))e^(2i(k+1)t) −ln(2)−it+Σ_(k≥0) (((−1)^k )/((k+1)))e^(−2i(k+1)t) −ln(2)+it]  =−ln(2)+Σ_(k≥0) (((−1)^k )/((k+1))){((e^(2i(k+1)t) +e^(−2i(k+1)t) )/2)}  =−ln(2)+Σ_(k≥0) (((−1)^k )/((k+1)))cos(2(k+1)t)  g(x)=f(ax),∀x∈]−∣(π/(2a))∣,(π/(∣2a∣))[,∀a≠0  g(x)=−ln(2)+Σ_(k≥0) (((−1)^k )/(k+1))cos(2a(k+1)x)

$${let} \\ $$$${f}\left({t}\right)={ln}\left({cos}\left({t}\right)\right) \\ $$$$\left.{t}\in\right]−\frac{\pi}{\mathrm{2}},\frac{\pi}{\mathrm{2}}\left[,{cos}\left({t}\right)=\frac{{e}^{{it}} +{e}^{−{it}} }{\mathrm{2}}\right. \\ $$$${f}\left({t}\right)={ln}\left(\frac{{e}^{{it}} +{e}^{−{it}} }{\mathrm{2}}\right)={ln}\left(\mathrm{1}+{e}^{\mathrm{2}{it}} \right)−{ln}\left(\mathrm{2}{e}^{{it}} \right) \\ $$$$=\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} {e}^{\mathrm{2}{i}\left({k}+\mathrm{1}\right){t}} }{\left({k}+\mathrm{1}\right)}−{ln}\left(\mathrm{2}\right)−{it} \\ $$$${f}\left({t}\right)={f}\left(−{t}\right)\Rightarrow{f}\left({t}\right)=\frac{{f}\left({t}\right)+{f}\left(−{t}\right)}{\mathrm{2}} \\ $$$$\Rightarrow{f}\left({t}\right)=\frac{\mathrm{1}}{\mathrm{2}}\left[\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{\left({k}+\mathrm{1}\right)}{e}^{\mathrm{2}{i}\left({k}+\mathrm{1}\right){t}} −{ln}\left(\mathrm{2}\right)−{it}+\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{\left({k}+\mathrm{1}\right)}{e}^{−\mathrm{2}{i}\left({k}+\mathrm{1}\right){t}} −{ln}\left(\mathrm{2}\right)+{it}\right] \\ $$$$=−{ln}\left(\mathrm{2}\right)+\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{\left({k}+\mathrm{1}\right)}\left\{\frac{{e}^{\mathrm{2}{i}\left({k}+\mathrm{1}\right){t}} +{e}^{−\mathrm{2}{i}\left({k}+\mathrm{1}\right){t}} }{\mathrm{2}}\right\} \\ $$$$=−{ln}\left(\mathrm{2}\right)+\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{\left({k}+\mathrm{1}\right)}{cos}\left(\mathrm{2}\left({k}+\mathrm{1}\right){t}\right) \\ $$$$\left.{g}\left({x}\right)={f}\left({ax}\right),\forall{x}\in\right]−\mid\frac{\pi}{\mathrm{2}{a}}\mid,\frac{\pi}{\mid\mathrm{2}{a}\mid}\left[,\forall{a}\neq\mathrm{0}\right. \\ $$$${g}\left({x}\right)=−{ln}\left(\mathrm{2}\right)+\underset{{k}\geqslant\mathrm{0}} {\sum}\frac{\left(−\mathrm{1}\right)^{{k}} }{{k}+\mathrm{1}}{cos}\left(\mathrm{2}{a}\left({k}+\mathrm{1}\right){x}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com