Question Number 195571 by York12 last updated on 05/Aug/23 | ||
$${let}\:{f}\left({x}+{y}\right)+{f}\left({x}−{y}\right)=\mathrm{2}{f}\left({x}\right){f}\left({y}\right)\wedge{f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=−\mathrm{1} \\ $$$${compute}\:\underset{{k}=\mathrm{1}} {\overset{\mathrm{20}} {\sum}}\left[\frac{\mathrm{1}}{\mathrm{sin}\:\left({k}\right)\mathrm{sin}\:\left({k}+{f}\left({k}\right)\right)}\right] \\ $$ | ||
Answered by mahdipoor last updated on 05/Aug/23 | ||
$${x}=\mathrm{1}/\mathrm{2}\:\:\:{y}=\mathrm{0}\:\Rightarrow\:\mathrm{2}{f}\left(\mathrm{1}/\mathrm{2}\right)=\mathrm{2}{f}\left(\mathrm{1}/\mathrm{2}\right){f}\left(\mathrm{0}\right)\:\Rightarrow{f}\left(\mathrm{0}\right)=\mathrm{1} \\ $$$${x}=\mathrm{1}/\mathrm{2}\:\:\:{y}=\mathrm{1}/\mathrm{2}\Rightarrow{f}\left(\mathrm{1}\right)+{f}\left(\mathrm{0}\right)=\mathrm{2}{f}^{\mathrm{2}} \left(\mathrm{1}/\mathrm{2}\right)\:\Rightarrow{f}\left(\mathrm{1}\right)=\mathrm{1} \\ $$$${x}=\mathrm{1}\:\:{y}=\mathrm{1}\Rightarrow{f}\left(\mathrm{2}\right)+{f}\left(\mathrm{0}\right)=\mathrm{2}{f}^{\mathrm{2}} \left(\mathrm{1}\right)\:\Rightarrow{f}\left(\mathrm{2}\right)=\mathrm{1} \\ $$$${x}=\mathrm{2}\:\:{y}=\mathrm{1}\:\Rightarrow{f}\left(\mathrm{3}\right)+{f}\left(\mathrm{1}\right)=\mathrm{2}{f}\left(\mathrm{2}\right){f}\left(\mathrm{1}\right)\Rightarrow{f}\left(\mathrm{3}\right)=\mathrm{1} \\ $$$$.... \\ $$$${x}={n}\:\:{y}=\mathrm{1}\Rightarrow{f}\left({n}\right)+{f}\left({n}−\mathrm{1}\right)=\mathrm{2}{f}\left({n}\right){f}\left(\mathrm{1}\right) \\ $$$$\:\:\Rightarrow{f}\left(\mathrm{1}\right)={f}\left({n}−\mathrm{1}\right)=\mathrm{1}\Rightarrow{f}\left({n}\right)=\mathrm{1} \\ $$$$.... \\ $$$$\Sigma=\underset{\mathrm{1}} {\overset{\mathrm{20}} {\sum}}\frac{\mathrm{1}}{{sin}\left({k}\right){sin}\left({k}+\mathrm{1}\right)} \\ $$ | ||
Answered by mr W last updated on 05/Aug/23 | ||
$${f}\left({x}\right)=\mathrm{cos}\:\left({ax}\right) \\ $$$${f}\left(\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{cos}\:\left(\frac{{a}}{\mathrm{2}}\right)=−\mathrm{1}\:\Rightarrow\frac{{a}}{\mathrm{2}}=\pi \\ $$$$\Rightarrow{f}\left({x}\right)=\mathrm{cos}\:\left(\mathrm{2}\pi{x}\right) \\ $$$${for}\:{x}\in{Z},\:{f}\left({x}\right)=\mathrm{1} \\ $$$$\underset{{k}=\mathrm{1}} {\overset{\mathrm{20}} {\sum}}\frac{\mathrm{1}}{\mathrm{sin}\:\left({k}\right)\:\mathrm{sin}\:\left({k}+{f}\left({k}\right)\right)} \\ $$$$=\underset{{k}=\mathrm{1}} {\overset{\mathrm{20}} {\sum}}\frac{\mathrm{1}}{\mathrm{sin}\:\left({k}\right)\:\mathrm{sin}\:\left({k}+\mathrm{1}\right)} \\ $$$$\approx\mathrm{1}.\mathrm{54106054} \\ $$ | ||
Commented by York12 last updated on 05/Aug/23 | ||
$$ \\ $$$$\Rightarrow{f}\left({x}\right)={cos}\left(\mathrm{2}\pi{x}\right) \\ $$$$\Rightarrow\underset{{k}=\mathrm{1}} {\overset{\mathrm{20}} {\sum}}\left[\frac{\mathrm{1}}{\mathrm{sin}\:\left({k}\right)\mathrm{sin}\:\left({k}+{f}\left({k}\right)\right)}\right]=\underset{{k}=\mathrm{1}} {\overset{\mathrm{20}} {\sum}}\left[\frac{\mathrm{1}}{{sin}\left({k}\right){sin}\left({k}+\mathrm{1}\right)}\right] \\ $$$$={cosec}\left(\mathrm{1}\right)\underset{{k}=\mathrm{1}} {\overset{\mathrm{20}} {\sum}}\left[\frac{{sin}\left(\mathrm{1}\right)}{{sin}\left({k}\right){sin}\left({k}+\mathrm{1}\right)}\right]={cosec}\left(\mathrm{1}\right)\underset{{k}=\mathrm{1}} {\overset{\mathrm{20}} {\sum}}\left[\frac{{sin}\left({k}+\mathrm{1}−{k}\right)}{{sin}\left({k}\right){sin}\left({k}+\mathrm{1}\right)}\right] \\ $$$$={cosec}\left(\mathrm{1}\right)\underset{{k}=\mathrm{1}} {\overset{\mathrm{20}} {\sum}}\left[\frac{{sin}\left({k}+\mathrm{1}\right){cos}\left({k}\right)−{cos}\left({k}+\mathrm{1}\right){sin}\left({k}\right)}{{sin}\left({k}\right){sin}\left({k}+\mathrm{1}\right)}\right] \\ $$$$={cosec}\left(\mathrm{1}\right)\underset{{k}=\mathrm{1}} {\overset{\mathrm{20}} {\sum}}\left[{cot}\left({k}\right)−{cot}\left({k}+\mathrm{1}\right)\right] \\ $$$$={cosec}\left(\mathrm{1}\right)\left[{cot}\left(\mathrm{1}\right)−{cot}\left(\mathrm{21}\right)\right]\approx\mathrm{3133}.\mathrm{3715} \\ $$ | ||