Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 78667 by berket last updated on 19/Jan/20

let f(x)=(x+1)(((x+1)(x−3)^2 )/((x−1)^2 (x−4) )) then  a. find x and y intercepts  b. find vertical asymptote and horizontal asymtote  c. find domain and range of f  d. draw the graph of f

$${let}\:{f}\left({x}\right)=\left({x}+\mathrm{1}\right)\frac{\left({x}+\mathrm{1}\right)\left({x}−\mathrm{3}\right)^{\mathrm{2}} }{\left({x}−\mathrm{1}\right)^{\mathrm{2}} \left({x}−\mathrm{4}\right)\:}\:{then} \\ $$$${a}.\:{find}\:{x}\:{and}\:{y}\:{intercepts} \\ $$$${b}.\:{find}\:{vertical}\:{asymptote}\:{and}\:{horizontal}\:{asymtote} \\ $$$${c}.\:{find}\:{domain}\:{and}\:{range}\:{of}\:{f} \\ $$$${d}.\:{draw}\:{the}\:{graph}\:{of}\:{f} \\ $$

Answered by Rio Michael last updated on 19/Jan/20

a.  let y = (((x+1)^2 (x−3)^2 )/((x−1)^2 (x−4)))  y−intercept  , x = 0   y = (((0+1)^2 (0−3)^2 )/((0−1)^2 (0−4)^(2 ) )) = (9/(16))  point  (0,(9/(16)))  x−intercept, y = 0  0 = (((x+1)^2 (x−3)^2 )/((x−1)^2 (x−4)^2 ))   [(x + 1)(x−3)]^2 = 0     x = −1 or x = 3  point (−1,0) and  (3,0)  b. Vertical asymptotes  (x−1)^2 (x−4)=0  either (x−1)^2 =0 ⇒ x = 1 ∨ x = 4  Horizontal asymptote    lim_(x→∞)  f(x) = ∞ hence no horizontal asymptote.  c. domain = vertical asympotes

$${a}.\:\:{let}\:{y}\:=\:\frac{\left({x}+\mathrm{1}\right)^{\mathrm{2}} \left({x}−\mathrm{3}\right)^{\mathrm{2}} }{\left({x}−\mathrm{1}\right)^{\mathrm{2}} \left({x}−\mathrm{4}\right)} \\ $$$${y}−{intercept}\:\:,\:{x}\:=\:\mathrm{0} \\ $$$$\:{y}\:=\:\frac{\left(\mathrm{0}+\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{0}−\mathrm{3}\right)^{\mathrm{2}} }{\left(\mathrm{0}−\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{0}−\mathrm{4}\right)^{\mathrm{2}\:} }\:=\:\frac{\mathrm{9}}{\mathrm{16}} \\ $$$${point}\:\:\left(\mathrm{0},\frac{\mathrm{9}}{\mathrm{16}}\right) \\ $$$${x}−{intercept},\:{y}\:=\:\mathrm{0} \\ $$$$\mathrm{0}\:=\:\frac{\left({x}+\mathrm{1}\right)^{\mathrm{2}} \left({x}−\mathrm{3}\right)^{\mathrm{2}} }{\left({x}−\mathrm{1}\right)^{\mathrm{2}} \left({x}−\mathrm{4}\right)^{\mathrm{2}} } \\ $$$$\:\left[\left({x}\:+\:\mathrm{1}\right)\left({x}−\mathrm{3}\right)\right]^{\mathrm{2}} =\:\mathrm{0} \\ $$$$\:\:\:{x}\:=\:−\mathrm{1}\:{or}\:{x}\:=\:\mathrm{3} \\ $$$${point}\:\left(−\mathrm{1},\mathrm{0}\right)\:{and}\:\:\left(\mathrm{3},\mathrm{0}\right) \\ $$$${b}.\:{Vertical}\:{asymptotes}\:\:\left({x}−\mathrm{1}\right)^{\mathrm{2}} \left({x}−\mathrm{4}\right)=\mathrm{0} \\ $$$${either}\:\left({x}−\mathrm{1}\right)^{\mathrm{2}} =\mathrm{0}\:\Rightarrow\:{x}\:=\:\mathrm{1}\:\vee\:{x}\:=\:\mathrm{4} \\ $$$${Horizontal}\:{asymptote}\: \\ $$$$\:\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{f}\left({x}\right)\:=\:\infty\:{hence}\:{no}\:{horizontal}\:{asymptote}. \\ $$$${c}.\:{domain}\:=\:{vertical}\:{asympotes} \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com