Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 93898 by mathmax by abdo last updated on 16/May/20

let f(x)=2(√(3−x)) and g(x) =x^2 −2x +5  1) calculate fog(x) and determine D_(fog)   2) calculate  ∫ fog(x)dx  3) calculate ∫ ((f^(−1) (x))/(f(x)))dx  and  ∫ ((f^(−1) og(x))/(fog(x)))dx

$${let}\:{f}\left({x}\right)=\mathrm{2}\sqrt{\mathrm{3}−{x}}\:{and}\:{g}\left({x}\right)\:={x}^{\mathrm{2}} −\mathrm{2}{x}\:+\mathrm{5} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{fog}\left({x}\right)\:{and}\:{determine}\:{D}_{{fog}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\:\int\:{fog}\left({x}\right){dx} \\ $$$$\left.\mathrm{3}\right)\:{calculate}\:\int\:\frac{{f}^{−\mathrm{1}} \left({x}\right)}{{f}\left({x}\right)}{dx}\:\:{and}\:\:\int\:\frac{{f}^{−\mathrm{1}} {og}\left({x}\right)}{{fog}\left({x}\right)}{dx} \\ $$

Commented by mathmax by abdo last updated on 17/May/20

sorry g(x) =x^2 −2x−5

$${sorry}\:{g}\left({x}\right)\:={x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{5} \\ $$

Answered by Kunal12588 last updated on 16/May/20

1⟩ fog(x)=2(√(3−x^2 +2x−5))=2(√(2x−x^2 −2))  what is meant by D_(fog) ?(derivative?)  2⟩ 2∫(√(−[(x−1)^2 +2−1])) dx       =2∫(√(−(x−1)^2 −1)) dx  it is like finding ∫(√(−x)) dx; I hvn′t learnt  about complex integrals.  3⟩ f^(−1) (x)=3−(x^2 /2)=(1/2)(12−x^2 )  I=(1/4)∫((12−x^2 )/(√(3−x)))dx       (√(3−x))=t⇒ x=3−t^2 ⇒ dx=−2t dt  I=(1/4)∫((12−(3−t^2 )^2 )/t)(−2t)dt    =(1/2)∫[(t^2 −3)^2 −12] dt=(1/2)∫(t^4 −6t^2 −3)dt    =(1/(10))(3−x)^2 (√(3−x))−(3−x)(√(3−x))−(3/2)(√(3−x))+C  =(1/(10))(x^2 −5x−9)(√(3−x))+C  4⟩ complex integral

$$\mathrm{1}\rangle\:{fog}\left({x}\right)=\mathrm{2}\sqrt{\mathrm{3}−{x}^{\mathrm{2}} +\mathrm{2}{x}−\mathrm{5}}=\mathrm{2}\sqrt{\mathrm{2}{x}−{x}^{\mathrm{2}} −\mathrm{2}} \\ $$$${what}\:{is}\:{meant}\:{by}\:{D}_{{fog}} ?\left({derivative}?\right) \\ $$$$\mathrm{2}\rangle\:\mathrm{2}\int\sqrt{−\left[\left({x}−\mathrm{1}\right)^{\mathrm{2}} +\mathrm{2}−\mathrm{1}\right]}\:{dx} \\ $$$$\:\:\:\:\:=\mathrm{2}\int\sqrt{−\left({x}−\mathrm{1}\right)^{\mathrm{2}} −\mathrm{1}}\:{dx} \\ $$$${it}\:{is}\:{like}\:{finding}\:\int\sqrt{−{x}}\:{dx};\:{I}\:{hvn}'{t}\:{learnt} \\ $$$${about}\:{complex}\:{integrals}. \\ $$$$\mathrm{3}\rangle\:{f}^{−\mathrm{1}} \left({x}\right)=\mathrm{3}−\frac{{x}^{\mathrm{2}} }{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{12}−{x}^{\mathrm{2}} \right) \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{4}}\int\frac{\mathrm{12}−{x}^{\mathrm{2}} }{\sqrt{\mathrm{3}−{x}}}{dx} \\ $$$$\:\:\:\:\:\sqrt{\mathrm{3}−{x}}={t}\Rightarrow\:{x}=\mathrm{3}−{t}^{\mathrm{2}} \Rightarrow\:{dx}=−\mathrm{2}{t}\:{dt} \\ $$$${I}=\frac{\mathrm{1}}{\mathrm{4}}\int\frac{\mathrm{12}−\left(\mathrm{3}−{t}^{\mathrm{2}} \right)^{\mathrm{2}} }{{t}}\left(−\mathrm{2}{t}\right){dt} \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{2}}\int\left[\left({t}^{\mathrm{2}} −\mathrm{3}\right)^{\mathrm{2}} −\mathrm{12}\right]\:{dt}=\frac{\mathrm{1}}{\mathrm{2}}\int\left({t}^{\mathrm{4}} −\mathrm{6}{t}^{\mathrm{2}} −\mathrm{3}\right){dt} \\ $$$$\:\:=\frac{\mathrm{1}}{\mathrm{10}}\left(\mathrm{3}−{x}\right)^{\mathrm{2}} \sqrt{\mathrm{3}−{x}}−\left(\mathrm{3}−{x}\right)\sqrt{\mathrm{3}−{x}}−\frac{\mathrm{3}}{\mathrm{2}}\sqrt{\mathrm{3}−{x}}+{C} \\ $$$$=\frac{\mathrm{1}}{\mathrm{10}}\left({x}^{\mathrm{2}} −\mathrm{5}{x}−\mathrm{9}\right)\sqrt{\mathrm{3}−{x}}+{C} \\ $$$$\mathrm{4}\rangle\:{complex}\:{integral} \\ $$

Commented by mathmax by abdo last updated on 17/May/20

thank you kunal

$${thank}\:{you}\:{kunal} \\ $$

Commented by mathmax by abdo last updated on 17/May/20

D_(fog)  mean set of definition..!

$${D}_{{fog}} \:{mean}\:{set}\:{of}\:{definition}..! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com