Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 48043 by maxmathsup by imad last updated on 18/Nov/18

let f(α) =∫_(−∞) ^(+∞)   ((cos(αx^3 ))/(x^2  +8)) dx  1)calculate f(α)  2) calculate ∫_(−∞) ^(+∞)   ((cos(2x^3 ))/(x^2  +8))dx .

$${let}\:{f}\left(\alpha\right)\:=\int_{−\infty} ^{+\infty} \:\:\frac{{cos}\left(\alpha{x}^{\mathrm{3}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{8}}\:{dx} \\ $$$$\left.\mathrm{1}\right){calculate}\:{f}\left(\alpha\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\int_{−\infty} ^{+\infty} \:\:\frac{{cos}\left(\mathrm{2}{x}^{\mathrm{3}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{8}}{dx}\:. \\ $$

Commented by maxmathsup by imad last updated on 20/Nov/18

1) we have f(α)=Re( ∫_(−∞) ^(+∞)   (e^(iαx^3 ) /(x^2  +8))dx) let consider the complex function  ϕ(z) = (e^(iαz^3 ) /(z^2 +8)) ⇒ϕ(z) =(e^(iαz^3 ) /(z^2 −(2(√2)i)^2 )) =(e^(iαz^3 ) /((z−2(√2)i)(z+2(√2)i)))  so the poles of ϕ are +^− 2(√2)i  residus theorem give  ∫_(−∞) ^(+∞) ϕ(z)dz =2iπ Res(ϕ,2i(√2)) but  Res(ϕ,2i(√2)) =lim_(z→2i(√2))     (z−2i(√2))ϕ(z) =(e^(iα(2i(√2))^3 ) /(4i(√2))) =(e^(−iα(16i(√2))) /(4i(√2)))  = (e^(16α(√2)) /(4i(√2))) ⇒∫_(−∞) ^(+∞)  ϕ(z)dz =2iπ .(e^(16α(√2)) /(4i(√2))) =((π e^(16α(√2)) )/(2(√2))) ⇒  f(α) = ((π(√2))/4) e^(16α(√2)) .  2)∫_(−∞) ^(+∞)    ((cos(2x^3 ))/(x^2  +8))dx =f(2) =((π(√2))/4) e^(32(√2)) .

$$\left.\mathrm{1}\right)\:{we}\:{have}\:{f}\left(\alpha\right)={Re}\left(\:\int_{−\infty} ^{+\infty} \:\:\frac{{e}^{{i}\alpha{x}^{\mathrm{3}} } }{{x}^{\mathrm{2}} \:+\mathrm{8}}{dx}\right)\:{let}\:{consider}\:{the}\:{complex}\:{function} \\ $$$$\varphi\left({z}\right)\:=\:\frac{{e}^{{i}\alpha{z}^{\mathrm{3}} } }{{z}^{\mathrm{2}} +\mathrm{8}}\:\Rightarrow\varphi\left({z}\right)\:=\frac{{e}^{{i}\alpha{z}^{\mathrm{3}} } }{{z}^{\mathrm{2}} −\left(\mathrm{2}\sqrt{\mathrm{2}}{i}\right)^{\mathrm{2}} }\:=\frac{{e}^{{i}\alpha{z}^{\mathrm{3}} } }{\left({z}−\mathrm{2}\sqrt{\mathrm{2}}{i}\right)\left({z}+\mathrm{2}\sqrt{\mathrm{2}}{i}\right)} \\ $$$${so}\:{the}\:{poles}\:{of}\:\varphi\:{are}\:\overset{−} {+}\mathrm{2}\sqrt{\mathrm{2}}{i}\:\:{residus}\:{theorem}\:{give} \\ $$$$\int_{−\infty} ^{+\infty} \varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:{Res}\left(\varphi,\mathrm{2}{i}\sqrt{\mathrm{2}}\right)\:{but} \\ $$$${Res}\left(\varphi,\mathrm{2}{i}\sqrt{\mathrm{2}}\right)\:={lim}_{{z}\rightarrow\mathrm{2}{i}\sqrt{\mathrm{2}}} \:\:\:\:\left({z}−\mathrm{2}{i}\sqrt{\mathrm{2}}\right)\varphi\left({z}\right)\:=\frac{{e}^{{i}\alpha\left(\mathrm{2}{i}\sqrt{\mathrm{2}}\right)^{\mathrm{3}} } }{\mathrm{4}{i}\sqrt{\mathrm{2}}}\:=\frac{{e}^{−{i}\alpha\left(\mathrm{16}{i}\sqrt{\mathrm{2}}\right)} }{\mathrm{4}{i}\sqrt{\mathrm{2}}} \\ $$$$=\:\frac{{e}^{\mathrm{16}\alpha\sqrt{\mathrm{2}}} }{\mathrm{4}{i}\sqrt{\mathrm{2}}}\:\Rightarrow\int_{−\infty} ^{+\infty} \:\varphi\left({z}\right){dz}\:=\mathrm{2}{i}\pi\:.\frac{{e}^{\mathrm{16}\alpha\sqrt{\mathrm{2}}} }{\mathrm{4}{i}\sqrt{\mathrm{2}}}\:=\frac{\pi\:{e}^{\mathrm{16}\alpha\sqrt{\mathrm{2}}} }{\mathrm{2}\sqrt{\mathrm{2}}}\:\Rightarrow \\ $$$${f}\left(\alpha\right)\:=\:\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{4}}\:{e}^{\mathrm{16}\alpha\sqrt{\mathrm{2}}} . \\ $$$$\left.\mathrm{2}\right)\int_{−\infty} ^{+\infty} \:\:\:\frac{{cos}\left(\mathrm{2}{x}^{\mathrm{3}} \right)}{{x}^{\mathrm{2}} \:+\mathrm{8}}{dx}\:={f}\left(\mathrm{2}\right)\:=\frac{\pi\sqrt{\mathrm{2}}}{\mathrm{4}}\:{e}^{\mathrm{32}\sqrt{\mathrm{2}}} . \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com