Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 178624 by infinityaction last updated on 19/Oct/22

       let f:[0,1]→ R be given by    f(x) =  (((1+x^(1/3) )^3 +(1−x^(1/3) )^3 )/(8(1+x)))   then    max{f(x): x∈[0,1]}−min{f(x):x∈[0,1]}  is

$$\:\:\:\:\:\:\:\boldsymbol{\mathrm{let}}\:\boldsymbol{\mathrm{f}}:\left[\mathrm{0},\mathrm{1}\right]\rightarrow\:\mathbb{R}\:\boldsymbol{\mathrm{be}}\:\boldsymbol{\mathrm{given}}\:\boldsymbol{\mathrm{by}} \\ $$$$\:\:\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right)\:=\:\:\frac{\left(\mathrm{1}+\boldsymbol{\mathrm{x}}^{\frac{\mathrm{1}}{\mathrm{3}}} \right)^{\mathrm{3}} +\left(\mathrm{1}−\boldsymbol{\mathrm{x}}^{\frac{\mathrm{1}}{\mathrm{3}}} \right)^{\mathrm{3}} }{\mathrm{8}\left(\mathrm{1}+\boldsymbol{\mathrm{x}}\right)}\:\:\:\boldsymbol{\mathrm{then}} \\ $$$$\:\:\boldsymbol{\mathrm{max}}\left\{\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right):\:\boldsymbol{\mathrm{x}}\in\left[\mathrm{0},\mathrm{1}\right]\right\}−\boldsymbol{\mathrm{min}}\left\{\boldsymbol{\mathrm{f}}\left(\boldsymbol{\mathrm{x}}\right):\boldsymbol{\mathrm{x}}\in\left[\mathrm{0},\mathrm{1}\right]\right\} \\ $$$$\mathrm{is} \\ $$

Answered by a.lgnaoui last updated on 20/Oct/22

posons=x^(1/3) =z      ; x=z^3   (1+z)^3 +(1−z)^3 =2[(1+z)^2 +(1−z)^2 −(1−z^2 )]=2(1+3z^2 )  f(x)=((1+3z^2 )/(4(1+z^3 )))=((1+3x^(2/3) )/(4(1+x)))  (df/dx)=(1/4)[((3(2/3)x^((−1)/3) (1+x)−(1+3x^(2/3) ))/((1+x)^2 ))]=((2x^((−1)/3) −x^(2/3) −1)/(4(1+x)^2 ))  ((2/z) −z^2 −1)×(1/(4(1+z^3 )^2 ))=((2−z^3 −z)/(4z(1+z^3 )))  −((z^3 +z−2)/(4z(1+z^3 ))) =−(((z−1)^2 (z+2))/(4z(1+z^3 )))    ⇒[extremum(x=1  f(1)=(1/2)=max(f(x)) ;  f(0)=(1/4)=min(f(x))]  max(f(x))−min(f(x))=(1/4)

$$\mathrm{posons}=\mathrm{x}^{\frac{\mathrm{1}}{\mathrm{3}}} =\mathrm{z}\:\:\:\:\:\:;\:\mathrm{x}=\mathrm{z}^{\mathrm{3}} \\ $$$$\left(\mathrm{1}+\mathrm{z}\right)^{\mathrm{3}} +\left(\mathrm{1}−\mathrm{z}\right)^{\mathrm{3}} =\mathrm{2}\left[\left(\mathrm{1}+\mathrm{z}\right)^{\mathrm{2}} +\left(\mathrm{1}−\mathrm{z}\right)^{\mathrm{2}} −\left(\mathrm{1}−\mathrm{z}^{\mathrm{2}} \right)\right]=\mathrm{2}\left(\mathrm{1}+\mathrm{3z}^{\mathrm{2}} \right) \\ $$$$\mathrm{f}\left(\mathrm{x}\right)=\frac{\mathrm{1}+\mathrm{3z}^{\mathrm{2}} }{\mathrm{4}\left(\mathrm{1}+\mathrm{z}^{\mathrm{3}} \right)}=\frac{\mathrm{1}+\mathrm{3x}^{\frac{\mathrm{2}}{\mathrm{3}}} }{\mathrm{4}\left(\mathrm{1}+\mathrm{x}\right)} \\ $$$$\frac{\mathrm{df}}{\mathrm{dx}}=\frac{\mathrm{1}}{\mathrm{4}}\left[\frac{\mathrm{3}\frac{\mathrm{2}}{\mathrm{3}}\mathrm{x}^{\frac{−\mathrm{1}}{\mathrm{3}}} \left(\mathrm{1}+\mathrm{x}\right)−\left(\mathrm{1}+\mathrm{3x}^{\frac{\mathrm{2}}{\mathrm{3}}} \right)}{\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{2}} }\right]=\frac{\mathrm{2x}^{\frac{−\mathrm{1}}{\mathrm{3}}} −\mathrm{x}^{\frac{\mathrm{2}}{\mathrm{3}}} −\mathrm{1}}{\mathrm{4}\left(\mathrm{1}+\mathrm{x}\right)^{\mathrm{2}} } \\ $$$$\left(\frac{\mathrm{2}}{\mathrm{z}}\:−\mathrm{z}^{\mathrm{2}} −\mathrm{1}\right)×\frac{\mathrm{1}}{\mathrm{4}\left(\mathrm{1}+{z}^{\mathrm{3}} \right)^{\mathrm{2}} }=\frac{\mathrm{2}−\mathrm{z}^{\mathrm{3}} −\mathrm{z}}{\mathrm{4z}\left(\mathrm{1}+\mathrm{z}^{\mathrm{3}} \right)} \\ $$$$−\frac{\mathrm{z}^{\mathrm{3}} +\mathrm{z}−\mathrm{2}}{\mathrm{4z}\left(\mathrm{1}+\mathrm{z}^{\mathrm{3}} \right)}\:=−\frac{\left(\mathrm{z}−\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{z}+\mathrm{2}\right)}{\mathrm{4z}\left(\mathrm{1}+\mathrm{z}^{\mathrm{3}} \right)}\:\:\:\:\Rightarrow\left[\mathrm{ex}{t}\mathrm{remum}\left({x}=\mathrm{1}\:\:{f}\left(\mathrm{1}\right)=\frac{\mathrm{1}}{\mathrm{2}}={max}\left({f}\left({x}\right)\right)\:;\:\:{f}\left(\mathrm{0}\right)=\frac{\mathrm{1}}{\mathrm{4}}={min}\left({f}\left({x}\right)\right)\right]\right. \\ $$$${max}\left({f}\left({x}\right)\right)−{min}\left({f}\left({x}\right)\right)=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$ \\ $$

Commented by infinityaction last updated on 20/Oct/22

thanks sir

$${thanks}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com