Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 62812 by mathmax by abdo last updated on 25/Jun/19

let U_n =∫_0 ^(+∞)   ((arctan(nt))/(1+n^2 t^2 ))dt    with n natural≥1  1) calculate U_n   2) calculate lim_(n→+∞)  n^2  U_n   3) study the convergence of Σ U_n

$${let}\:{U}_{{n}} =\int_{\mathrm{0}} ^{+\infty} \:\:\frac{{arctan}\left({nt}\right)}{\mathrm{1}+{n}^{\mathrm{2}} {t}^{\mathrm{2}} }{dt}\:\:\:\:{with}\:{n}\:{natural}\geqslant\mathrm{1} \\ $$$$\left.\mathrm{1}\right)\:{calculate}\:{U}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:{lim}_{{n}\rightarrow+\infty} \:{n}^{\mathrm{2}} \:{U}_{{n}} \\ $$$$\left.\mathrm{3}\right)\:{study}\:{the}\:{convergence}\:{of}\:\Sigma\:{U}_{{n}} \\ $$

Commented by mathmax by abdo last updated on 26/Jun/19

1) by parts  u^′  =(1/(1+n^2 t^2 ))  and v =arctan(nt) ⇒  U_n =[(1/n) (arctan(nt))^2 ]_0 ^(+∞)  −∫_0 ^∞ (1/n) arctan(nt)(n/(1+n^2 t^2 ))dt  =(π^2 /(4n)) −∫_0 ^∞    ((arctan(nt))/(1+n^2 t^2 ))dt =(π^2 /(4n)) −U_n  ⇒2U_n =(π^2 /(4n)) ⇒ U_n =(π^2 /(8n))  2)we have n^2  U_n =((nπ^2 )/8) ⇒lim_(n→+∞) n^2 U_n =+∞  3)the numeric serie Σ(π^2 /(8n))  diverges ⇒Σ U_n  diverges.

$$\left.\mathrm{1}\right)\:{by}\:{parts}\:\:{u}^{'} \:=\frac{\mathrm{1}}{\mathrm{1}+{n}^{\mathrm{2}} {t}^{\mathrm{2}} }\:\:{and}\:{v}\:={arctan}\left({nt}\right)\:\Rightarrow \\ $$$${U}_{{n}} =\left[\frac{\mathrm{1}}{{n}}\:\left({arctan}\left({nt}\right)\right)^{\mathrm{2}} \right]_{\mathrm{0}} ^{+\infty} \:−\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{1}}{{n}}\:{arctan}\left({nt}\right)\frac{{n}}{\mathrm{1}+{n}^{\mathrm{2}} {t}^{\mathrm{2}} }{dt} \\ $$$$=\frac{\pi^{\mathrm{2}} }{\mathrm{4}{n}}\:−\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{arctan}\left({nt}\right)}{\mathrm{1}+{n}^{\mathrm{2}} {t}^{\mathrm{2}} }{dt}\:=\frac{\pi^{\mathrm{2}} }{\mathrm{4}{n}}\:−{U}_{{n}} \:\Rightarrow\mathrm{2}{U}_{{n}} =\frac{\pi^{\mathrm{2}} }{\mathrm{4}{n}}\:\Rightarrow\:{U}_{{n}} =\frac{\pi^{\mathrm{2}} }{\mathrm{8}{n}} \\ $$$$\left.\mathrm{2}\right){we}\:{have}\:{n}^{\mathrm{2}} \:{U}_{{n}} =\frac{{n}\pi^{\mathrm{2}} }{\mathrm{8}}\:\Rightarrow{lim}_{{n}\rightarrow+\infty} {n}^{\mathrm{2}} {U}_{{n}} =+\infty \\ $$$$\left.\mathrm{3}\right){the}\:{numeric}\:{serie}\:\Sigma\frac{\pi^{\mathrm{2}} }{\mathrm{8}{n}}\:\:{diverges}\:\Rightarrow\Sigma\:{U}_{{n}} \:{diverges}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com