Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 63651 by mathmax by abdo last updated on 06/Jul/19

let S_n (x)=Σ_(k=0) ^n  e^(−k) sin(k^2 x)  1) determine 2 sequence  U_n (x) and V_n (x) wich verify U_n ≤ S_n ≤ V_n   2) let  S =lim_(n→+∞)  S(x)  study the convergence of S.

$${let}\:{S}_{{n}} \left({x}\right)=\sum_{{k}=\mathrm{0}} ^{{n}} \:{e}^{−{k}} {sin}\left({k}^{\mathrm{2}} {x}\right) \\ $$$$\left.\mathrm{1}\right)\:{determine}\:\mathrm{2}\:{sequence}\:\:{U}_{{n}} \left({x}\right)\:{and}\:{V}_{{n}} \left({x}\right)\:{wich}\:{verify}\:{U}_{{n}} \leqslant\:{S}_{{n}} \leqslant\:{V}_{{n}} \\ $$$$\left.\mathrm{2}\right)\:{let}\:\:{S}\:={lim}_{{n}\rightarrow+\infty} \:{S}\left({x}\right)\:\:{study}\:{the}\:{convergence}\:{of}\:{S}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com