Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 190602 by uchihayahia last updated on 07/Apr/23

      let S={a,b,c,d,e,f}   if we take any subset S (same subset is allowed),   it also can be S, which will form S if we join them,  order of operation does not matter   ({a,b,c,d},{d,e,f}) is the same as   ({d,e,f},{a,b,c,d})   how many ways can we choose?

$$ \\ $$$$\: \\ $$$$\:{let}\:{S}=\left\{{a},{b},{c},{d},{e},{f}\right\} \\ $$$$\:{if}\:{we}\:{take}\:{any}\:{subset}\:{S}\:\left({same}\:{subset}\:{is}\:{allowed}\right), \\ $$$$\:{it}\:{also}\:{can}\:{be}\:{S},\:{which}\:{will}\:{form}\:{S}\:{if}\:{we}\:{join}\:{them}, \\ $$$${order}\:{of}\:{operation}\:{does}\:{not}\:{matter} \\ $$$$\:\left(\left\{{a},{b},{c},{d}\right\},\left\{{d},{e},{f}\right\}\right)\:{is}\:{the}\:{same}\:{as} \\ $$$$\:\left(\left\{{d},{e},{f}\right\},\left\{{a},{b},{c},{d}\right\}\right) \\ $$$$\:{how}\:{many}\:{ways}\:{can}\:{we}\:{choose}? \\ $$$$\: \\ $$$$ \\ $$

Answered by mr W last updated on 07/Apr/23

 { (1),(6) :} {: (),() }+ { (2),(6) :} {: (),() }+ { (3),(6) :} {: (),() }+ { (4),(6) :} {: (),() }+ { (5),(6) :} {: (),() }+ { (6),(6) :} {: (),() }  =1+31+90+65+15+1  =203  (=B_6 =203)  with   { (k),(n) :} {: (),() }=S(n,k)=Stirling numbers of 2. kind  B_n =Bell numbers

$$\begin{cases}{\mathrm{1}}\\{\mathrm{6}}\end{cases}\left.\begin{matrix}{}\\{}\end{matrix}\right\}+\begin{cases}{\mathrm{2}}\\{\mathrm{6}}\end{cases}\left.\begin{matrix}{}\\{}\end{matrix}\right\}+\begin{cases}{\mathrm{3}}\\{\mathrm{6}}\end{cases}\left.\begin{matrix}{}\\{}\end{matrix}\right\}+\begin{cases}{\mathrm{4}}\\{\mathrm{6}}\end{cases}\left.\begin{matrix}{}\\{}\end{matrix}\right\}+\begin{cases}{\mathrm{5}}\\{\mathrm{6}}\end{cases}\left.\begin{matrix}{}\\{}\end{matrix}\right\}+\begin{cases}{\mathrm{6}}\\{\mathrm{6}}\end{cases}\left.\begin{matrix}{}\\{}\end{matrix}\right\} \\ $$$$=\mathrm{1}+\mathrm{31}+\mathrm{90}+\mathrm{65}+\mathrm{15}+\mathrm{1} \\ $$$$=\mathrm{203} \\ $$$$\left(={B}_{\mathrm{6}} =\mathrm{203}\right) \\ $$$${with} \\ $$$$\begin{cases}{{k}}\\{{n}}\end{cases}\left.\begin{matrix}{}\\{}\end{matrix}\right\}={S}\left({n},{k}\right)={Stirling}\:{numbers}\:{of}\:\mathrm{2}.\:{kind} \\ $$$${B}_{{n}} ={Bell}\:{numbers} \\ $$

Commented by uchihayahia last updated on 07/Apr/23

for example   subset with 0 element    and subset with 6 elements there is 1 choice   subset with 1 element   and subset with 5 elements there is 6 choices   subset with 1 element   and subset with 6 elements there is 6 choices   subset with 2 element   and subset with 6 elements there is 15 choices   subset with 2 element   and subset with 5 elements there is 30 choices   subset with 2 element   and subset with 4 elements there is 15 choices    so on and so forth

$${for}\:{example} \\ $$$$\:{subset}\:{with}\:\mathrm{0}\:{element}\: \\ $$$$\:{and}\:{subset}\:{with}\:\mathrm{6}\:{elements}\:{there}\:{is}\:\mathrm{1}\:{choice} \\ $$$$\:{subset}\:{with}\:\mathrm{1}\:{element} \\ $$$$\:{and}\:{subset}\:{with}\:\mathrm{5}\:{elements}\:{there}\:{is}\:\mathrm{6}\:{choices} \\ $$$$\:{subset}\:{with}\:\mathrm{1}\:{element} \\ $$$$\:{and}\:{subset}\:{with}\:\mathrm{6}\:{elements}\:{there}\:{is}\:\mathrm{6}\:{choices} \\ $$$$\:{subset}\:{with}\:\mathrm{2}\:{element} \\ $$$$\:{and}\:{subset}\:{with}\:\mathrm{6}\:{elements}\:{there}\:{is}\:\mathrm{15}\:{choices} \\ $$$$\:{subset}\:{with}\:\mathrm{2}\:{element} \\ $$$$\:{and}\:{subset}\:{with}\:\mathrm{5}\:{elements}\:{there}\:{is}\:\mathrm{30}\:{choices} \\ $$$$\:{subset}\:{with}\:\mathrm{2}\:{element} \\ $$$$\:{and}\:{subset}\:{with}\:\mathrm{4}\:{elements}\:{there}\:{is}\:\mathrm{15}\:{choices} \\ $$$$\:\:{so}\:{on}\:{and}\:{so}\:{forth} \\ $$$$ \\ $$$$ \\ $$

Commented by mr W last updated on 07/Apr/23

Commented by uchihayahia last updated on 07/Apr/23

 the subset can be empty set, also   any subset taken doesn′t have to disjoint.   i think it′s more than 52. i′m sorry if   my qusetion was not clear

$$\:{the}\:{subset}\:{can}\:{be}\:{empty}\:{set},\:{also} \\ $$$$\:{any}\:{subset}\:{taken}\:{doesn}'{t}\:{have}\:{to}\:{disjoint}. \\ $$$$\:{i}\:{think}\:{it}'{s}\:{more}\:{than}\:\mathrm{52}.\:{i}'{m}\:{sorry}\:{if} \\ $$$$\:{my}\:{qusetion}\:{was}\:{not}\:{clear} \\ $$

Commented by mr W last updated on 07/Apr/23

i′m sorry that it is still not clear to  me. can you explain with some   examples what is not included in  my solution and what you mean  with empty subsets?  btw: i misread that the set has only  5 elements. but it has 6 elements.  this is fixed.

$${i}'{m}\:{sorry}\:{that}\:{it}\:{is}\:{still}\:{not}\:{clear}\:{to} \\ $$$${me}.\:{can}\:{you}\:{explain}\:{with}\:{some}\: \\ $$$${examples}\:{what}\:{is}\:{not}\:{included}\:{in} \\ $$$${my}\:{solution}\:{and}\:{what}\:{you}\:{mean} \\ $$$${with}\:{empty}\:{subsets}? \\ $$$${btw}:\:{i}\:{misread}\:{that}\:{the}\:{set}\:{has}\:{only} \\ $$$$\mathrm{5}\:{elements}.\:{but}\:{it}\:{has}\:\mathrm{6}\:{elements}. \\ $$$${this}\:{is}\:{fixed}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com