Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 63474 by aliesam last updated on 04/Jul/19

let P(x)=x^2 +(1/2)x+b    and Q(x)=x^2 +cx+d    be to polynomials with real coefficient such that    P(x) Q(x)=Q(P(x))    find all the real roots of P(Q(x))=0

$${let}\:{P}\left({x}\right)={x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{x}+{b} \\ $$$$ \\ $$$${and}\:{Q}\left({x}\right)={x}^{\mathrm{2}} +{cx}+{d} \\ $$$$ \\ $$$${be}\:{to}\:{polynomials}\:{with}\:{real}\:{coefficient}\:{such}\:{that} \\ $$$$ \\ $$$${P}\left({x}\right)\:{Q}\left({x}\right)={Q}\left({P}\left({x}\right)\right) \\ $$$$ \\ $$$${find}\:{all}\:{the}\:{real}\:{roots}\:{of}\:{P}\left({Q}\left({x}\right)\right)=\mathrm{0} \\ $$

Answered by MJS last updated on 04/Jul/19

P(x)Q(x)−Q(P(x))=0  ⇒  (4c−2)x^3 −(4b+2c−4d+1)x^2 +(4bc−4b−2c+2d)x−(4b^2 +4bc−4bd+4d)=0   { ((4c−2=0)),((4b+2c−4d+1=0)),((4bc−4b−2c+2d=0)),((4b^2 +4bc−4bd+4d=0)) :}  ⇒ b=−(1/2)∧c=(1/2)∧d=0  P(x)=x^2 +(1/2)x−(1/2)  Q(x)=x^2 +(1/2)x  P(Q(x))=0  x^4 +x^3 +(3/4)x^2 +(1/4)x−(1/2)=0  (x+1)(x−(1/2))(x^2 +(1/2)x+1)=0  ⇒  x_1 =−1  x_2 =(1/2)  x_(3, 4) =−(1/4)±((√(15))/4)i

$${P}\left({x}\right){Q}\left({x}\right)−{Q}\left({P}\left({x}\right)\right)=\mathrm{0} \\ $$$$\Rightarrow \\ $$$$\left(\mathrm{4}{c}−\mathrm{2}\right){x}^{\mathrm{3}} −\left(\mathrm{4}{b}+\mathrm{2}{c}−\mathrm{4}{d}+\mathrm{1}\right){x}^{\mathrm{2}} +\left(\mathrm{4}{bc}−\mathrm{4}{b}−\mathrm{2}{c}+\mathrm{2}{d}\right){x}−\left(\mathrm{4}{b}^{\mathrm{2}} +\mathrm{4}{bc}−\mathrm{4}{bd}+\mathrm{4}{d}\right)=\mathrm{0} \\ $$$$\begin{cases}{\mathrm{4}{c}−\mathrm{2}=\mathrm{0}}\\{\mathrm{4}{b}+\mathrm{2}{c}−\mathrm{4}{d}+\mathrm{1}=\mathrm{0}}\\{\mathrm{4}{bc}−\mathrm{4}{b}−\mathrm{2}{c}+\mathrm{2}{d}=\mathrm{0}}\\{\mathrm{4}{b}^{\mathrm{2}} +\mathrm{4}{bc}−\mathrm{4}{bd}+\mathrm{4}{d}=\mathrm{0}}\end{cases} \\ $$$$\Rightarrow\:{b}=−\frac{\mathrm{1}}{\mathrm{2}}\wedge{c}=\frac{\mathrm{1}}{\mathrm{2}}\wedge{d}=\mathrm{0} \\ $$$${P}\left({x}\right)={x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{x}−\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${Q}\left({x}\right)={x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{x} \\ $$$${P}\left({Q}\left({x}\right)\right)=\mathrm{0} \\ $$$${x}^{\mathrm{4}} +{x}^{\mathrm{3}} +\frac{\mathrm{3}}{\mathrm{4}}{x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{4}}{x}−\frac{\mathrm{1}}{\mathrm{2}}=\mathrm{0} \\ $$$$\left({x}+\mathrm{1}\right)\left({x}−\frac{\mathrm{1}}{\mathrm{2}}\right)\left({x}^{\mathrm{2}} +\frac{\mathrm{1}}{\mathrm{2}}{x}+\mathrm{1}\right)=\mathrm{0} \\ $$$$\Rightarrow \\ $$$${x}_{\mathrm{1}} =−\mathrm{1} \\ $$$${x}_{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${x}_{\mathrm{3},\:\mathrm{4}} =−\frac{\mathrm{1}}{\mathrm{4}}\pm\frac{\sqrt{\mathrm{15}}}{\mathrm{4}}\mathrm{i} \\ $$

Commented by aliesam last updated on 04/Jul/19

god bless you

$${god}\:{bless}\:{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com