Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 190420 by mnjuly1970 last updated on 02/Apr/23

              laplace  transform               −−−−−−−            L_t  {  (( sin(t ))/t)  } = F (s )                                 F (s )=  ?               then  calculate .                Ω=∫_0 ^( ∞) ((e^( −2t) sin(t ))/t) dt =?                   −−−−−−−−

$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{laplace}\:\:\mathrm{transform} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:−−−−−−− \\ $$$$\:\:\:\:\:\:\:\:\:\:\mathcal{L}_{{t}} \:\left\{\:\:\frac{\:\mathrm{sin}\left({t}\:\right)}{{t}}\:\:\right\}\:=\:\mathcal{F}\:\left({s}\:\right)\:\:\:\:\:\:\:\:\:\:\: \\ $$$$\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathcal{F}\:\left({s}\:\right)=\:\:?\:\: \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:{then}\:\:{calculate}\:. \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\Omega=\int_{\mathrm{0}} ^{\:\infty} \frac{{e}^{\:−\mathrm{2}{t}} {sin}\left({t}\:\right)}{{t}}\:{dt}\:=? \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:−−−−−−−− \\ $$

Commented by mahdipoor last updated on 02/Apr/23

  L(((sin(t))/t))=L(((t−(t^3 /(3!))+(t^5 /(5!))−...)/t))=L(1−(t^2 /(3!))+(t^4 /(5!))−...)  =L(1)−(1/(3!))L(t^2 )+(1/(5!))L(t^4 )−...=  (1/s)−((2!)/(3!s^3 ))+((4!)/(5!s^5 ))−....=(1/s)−(1/(3s^3 ))+(1/(5s^5 ))−...=G(s)  G(s)=?⇒Ω=G(2)=?

$$ \\ $$$${L}\left(\frac{{sin}\left({t}\right)}{{t}}\right)={L}\left(\frac{{t}−\frac{{t}^{\mathrm{3}} }{\mathrm{3}!}+\frac{{t}^{\mathrm{5}} }{\mathrm{5}!}−...}{{t}}\right)={L}\left(\mathrm{1}−\frac{{t}^{\mathrm{2}} }{\mathrm{3}!}+\frac{{t}^{\mathrm{4}} }{\mathrm{5}!}−...\right) \\ $$$$={L}\left(\mathrm{1}\right)−\frac{\mathrm{1}}{\mathrm{3}!}{L}\left({t}^{\mathrm{2}} \right)+\frac{\mathrm{1}}{\mathrm{5}!}{L}\left({t}^{\mathrm{4}} \right)−...= \\ $$$$\frac{\mathrm{1}}{{s}}−\frac{\mathrm{2}!}{\mathrm{3}!{s}^{\mathrm{3}} }+\frac{\mathrm{4}!}{\mathrm{5}!{s}^{\mathrm{5}} }−....=\frac{\mathrm{1}}{{s}}−\frac{\mathrm{1}}{\mathrm{3}{s}^{\mathrm{3}} }+\frac{\mathrm{1}}{\mathrm{5}{s}^{\mathrm{5}} }−...={G}\left({s}\right) \\ $$$${G}\left({s}\right)=?\Rightarrow\Omega={G}\left(\mathrm{2}\right)=? \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 02/Apr/23

  thx ... G (s )= arctan((1/s))  G(2)= arctan((1/2) )...

$$\:\:{thx}\:...\:{G}\:\left({s}\:\right)=\:{arctan}\left(\frac{\mathrm{1}}{{s}}\right) \\ $$$${G}\left(\mathrm{2}\right)=\:{arctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\:\right)... \\ $$

Answered by witcher3 last updated on 04/Apr/23

F(s)=Im∫_0 ^∞ t^(−1) e^(−t(s−i)) dt,s>0  F′(s)=Im∫_0 ^∞ −e^(−ts+it) dt  =Im(1/(−s+i))  =−(1/(s^2 +1))⇒F(s)=−arctan(s)+c  lim_(x→∞) F(x)=0⇒c=(π/2)  Ω=−arctan(2)+(π/2)=arctan((1/2))

$$\mathrm{F}\left(\mathrm{s}\right)=\mathrm{Im}\int_{\mathrm{0}} ^{\infty} \mathrm{t}^{−\mathrm{1}} \mathrm{e}^{−\mathrm{t}\left(\mathrm{s}−\mathrm{i}\right)} \mathrm{dt},\mathrm{s}>\mathrm{0} \\ $$$$\mathrm{F}'\left(\mathrm{s}\right)=\mathrm{Im}\int_{\mathrm{0}} ^{\infty} −\mathrm{e}^{−\mathrm{ts}+\mathrm{it}} \mathrm{dt} \\ $$$$=\mathrm{Im}\frac{\mathrm{1}}{−\mathrm{s}+\mathrm{i}} \\ $$$$=−\frac{\mathrm{1}}{\mathrm{s}^{\mathrm{2}} +\mathrm{1}}\Rightarrow\mathrm{F}\left(\mathrm{s}\right)=−\mathrm{arctan}\left(\mathrm{s}\right)+\mathrm{c} \\ $$$$\underset{{x}\rightarrow\infty} {\mathrm{lim}F}\left(\mathrm{x}\right)=\mathrm{0}\Rightarrow\mathrm{c}=\frac{\pi}{\mathrm{2}} \\ $$$$\Omega=−\mathrm{arctan}\left(\mathrm{2}\right)+\frac{\pi}{\mathrm{2}}=\mathrm{arctan}\left(\frac{\mathrm{1}}{\mathrm{2}}\right) \\ $$$$ \\ $$$$ \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com