Question Number 121919 by talminator2856791 last updated on 12/Nov/20 | ||
$$\: \\ $$$$\: \\ $$$$\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\underset{{k}={p}} {\overset{\infty} {\sum}}\:\mathrm{4}\centerdot\mathrm{3}^{\mathrm{2}−{k}} \:=\:\frac{\mathrm{2}}{\mathrm{9}} \\ $$$$\:\:\:\:\:\:\:\:\:\:{p}\:=\:? \\ $$$$\: \\ $$$$\: \\ $$ | ||
Answered by Dwaipayan Shikari last updated on 12/Nov/20 | ||
$$\underset{{k}={p}} {\overset{\infty} {\sum}}\mathrm{4}.\mathrm{3}^{\mathrm{2}−{k}} =\mathrm{4}\left(\mathrm{3}^{\mathrm{2}−{p}} +\mathrm{3}^{\mathrm{2}−\left({p}+\mathrm{1}\right)} +...\right) \\ $$$$=\mathrm{36}\left(\frac{\mathrm{1}}{\mathrm{3}^{{p}} }+\frac{\mathrm{1}}{\mathrm{3}^{{p}+\mathrm{1}} }+...\right) \\ $$$$=\mathrm{36}\left(\frac{\frac{\mathrm{1}}{\mathrm{3}^{{p}} }}{\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}}}\right)=\frac{\mathrm{54}}{\mathrm{3}^{{p}} }=\frac{\mathrm{2}}{\mathrm{9}}\Rightarrow\frac{\mathrm{27}}{\mathrm{3}^{{p}−\mathrm{2}} }=\mathrm{1} \\ $$$$\mathrm{3}^{{p}−\mathrm{2}} =\mathrm{3}^{\mathrm{3}} \Rightarrow{p}=\mathrm{5} \\ $$ | ||
Answered by geoplitz last updated on 12/Nov/20 | ||
$$\underset{{k}={p}} {\overset{\infty} {\sum}}\mathrm{4}\centerdot\mathrm{3}^{\mathrm{2}−{k}} \:=\:\frac{\mathrm{2}}{\mathrm{9}} \\ $$$$\mathrm{4}\underset{{k}={p}} {\overset{\infty} {\sum}}\mathrm{3}^{\mathrm{2}} \centerdot\mathrm{3}^{−{k}} \:=\:\frac{\mathrm{2}}{\mathrm{9}} \\ $$$$\mathrm{4}\centerdot\mathrm{3}^{\mathrm{2}} \underset{{k}={p}} {\overset{\infty} {\sum}}\mathrm{3}^{−{k}} \:=\:\frac{\mathrm{2}}{\mathrm{9}} \\ $$$$\mathrm{36}\underset{{k}={p}} {\overset{\infty} {\sum}}\mathrm{3}^{−{k}} \:=\:\frac{\mathrm{2}}{\mathrm{9}} \\ $$$$\underset{{k}={p}} {\overset{\infty} {\sum}}\mathrm{3}^{−{k}} \:=\:\frac{\mathrm{2}}{\mathrm{9}\centerdot\mathrm{36}}\:=\:\frac{\mathrm{2}}{\mathrm{324}} \\ $$$$\frac{\mathrm{3}^{−{p}+\mathrm{1}} }{\mathrm{2}}\:=\:\frac{\mathrm{2}}{\mathrm{324}} \\ $$$$\mathrm{3}^{−{p}+\mathrm{1}} \:=\:\frac{\mathrm{4}}{\mathrm{324}}\:=\left(\frac{\mathrm{2}}{\mathrm{18}}\right)^{\mathrm{2}} \:=\:\frac{\mathrm{1}}{\mathrm{81}} \\ $$$$\mathrm{3}^{−{p}+\mathrm{1}} \:=\:\frac{\mathrm{1}}{\mathrm{81}}\:=\:\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{4}} }\:=\:\mathrm{3}^{−\mathrm{4}} \\ $$$$−{p}\:+\:\mathrm{1}\:=\:−\mathrm{4} \\ $$$$−{p}\:=\:−\mathrm{5}\:\Rightarrow\:{p}\:=\:\mathrm{5} \\ $$ | ||