Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 195291 by Matica last updated on 29/Jul/23

  it is given a,b,c ∈ N^∗   and  ab<c . Prove that a+b≤c.

$$\:\:{it}\:{is}\:{given}\:{a},{b},{c}\:\in\:\mathbb{N}^{\ast} \:\:{and}\:\:{ab}<{c}\:.\:{Prove}\:{that}\:{a}+{b}\leqslant{c}. \\ $$

Answered by Frix last updated on 29/Jul/23

c=ab+1  a+b≤ab+1  Let a<b  b−ab≤1−a  b(1−a)≤1−a  This is always true for a=1∧b∈N^∗   For a>1:  1−a<0 ⇒ b(1−a)≤1−a ⇔ b≥1 which is  true because b∈N^∗

$${c}={ab}+\mathrm{1} \\ $$$${a}+{b}\leqslant{ab}+\mathrm{1} \\ $$$$\mathrm{Let}\:{a}<{b} \\ $$$${b}−{ab}\leqslant\mathrm{1}−{a} \\ $$$${b}\left(\mathrm{1}−{a}\right)\leqslant\mathrm{1}−{a} \\ $$$$\mathrm{This}\:\mathrm{is}\:\mathrm{always}\:\mathrm{true}\:\mathrm{for}\:{a}=\mathrm{1}\wedge{b}\in\mathbb{N}^{\ast} \\ $$$$\mathrm{For}\:{a}>\mathrm{1}: \\ $$$$\mathrm{1}−{a}<\mathrm{0}\:\Rightarrow\:{b}\left(\mathrm{1}−{a}\right)\leqslant\mathrm{1}−{a}\:\Leftrightarrow\:{b}\geqslant\mathrm{1}\:\mathrm{which}\:\mathrm{is} \\ $$$$\mathrm{true}\:\mathrm{because}\:{b}\in\mathbb{N}^{\ast} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com