Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 140344 by mathdave last updated on 06/May/21

it is assumed that when children are born they   are equally likely to be boys or girls.  what is the probability that a family  of four children constains  (a)three boys and girl  (b)two boys and two girls   Mr W pls help out

$${it}\:{is}\:{assumed}\:{that}\:{when}\:{children}\:{are}\:{born}\:{they}\: \\ $$$${are}\:{equally}\:{likely}\:{to}\:{be}\:{boys}\:{or}\:{girls}. \\ $$$${what}\:{is}\:{the}\:{probability}\:{that}\:{a}\:{family} \\ $$$${of}\:{four}\:{children}\:{constains} \\ $$$$\left({a}\right){three}\:{boys}\:{and}\:{girl} \\ $$$$\left({b}\right){two}\:{boys}\:{and}\:{two}\:{girls} \\ $$$$\:{Mr}\:{W}\:{pls}\:{help}\:{out} \\ $$

Answered by mr W last updated on 06/May/21

(a)  probability for a child to be girl is (1/2),  probability for one from 4 children  to be girl is then  p=C_1 ^4 ×(1/2^4 )=(1/4)  (b)  p=C_2 ^4 ×(1/2^4 )=(3/8)

$$\left({a}\right) \\ $$$${probability}\:{for}\:{a}\:{child}\:{to}\:{be}\:{girl}\:{is}\:\frac{\mathrm{1}}{\mathrm{2}}, \\ $$$${probability}\:{for}\:{one}\:{from}\:\mathrm{4}\:{children} \\ $$$${to}\:{be}\:{girl}\:{is}\:{then} \\ $$$${p}={C}_{\mathrm{1}} ^{\mathrm{4}} ×\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{4}} }=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$\left({b}\right) \\ $$$${p}={C}_{\mathrm{2}} ^{\mathrm{4}} ×\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{4}} }=\frac{\mathrm{3}}{\mathrm{8}} \\ $$

Commented by mathdave last updated on 06/May/21

thanks so much but pls can u tell me hw u got   C_1 ^4  and (1/2^4 ),C_2 ^4   and (1/2^4 )

$${thanks}\:{so}\:{much}\:{but}\:{pls}\:{can}\:{u}\:{tell}\:{me}\:{hw}\:{u}\:{got}\: \\ $$$${C}_{\mathrm{1}} ^{\mathrm{4}} \:{and}\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{4}} },{C}_{\mathrm{2}} ^{\mathrm{4}} \:\:{and}\:\frac{\mathrm{1}}{\mathrm{2}^{\mathrm{4}} } \\ $$$$ \\ $$

Commented by mr W last updated on 06/May/21

you should read about binomial  probability.

$${you}\:{should}\:{read}\:{about}\:{binomial} \\ $$$${probability}. \\ $$

Commented by mr W last updated on 06/May/21

Commented by mr W last updated on 06/May/21

certainly we can also solve in other   ways.    four different childen, each can be  boy or girl, there are totally 2^4    possibilities.  (a)  one child is girl, there are C_1 ^4 =4   possibilities, i.e.  1  2   3   4  G B B B  B G B B  B B G B  B B B G  so the probability is (4/2^4 )=(1/4).  (b)  two children are boys, there are  C_2 ^4 =6 possibilities, i.e.  1   2  3  4  B B G G  B G B G  B G G B  G B B G  G B G B  G G B B  probability is (6/2^4 )=(3/8)

$${certainly}\:{we}\:{can}\:{also}\:{solve}\:{in}\:{other}\: \\ $$$${ways}. \\ $$$$ \\ $$$${four}\:{different}\:{childen},\:{each}\:{can}\:{be} \\ $$$${boy}\:{or}\:{girl},\:{there}\:{are}\:{totally}\:\mathrm{2}^{\mathrm{4}} \: \\ $$$${possibilities}. \\ $$$$\left({a}\right) \\ $$$${one}\:{child}\:{is}\:{girl},\:{there}\:{are}\:{C}_{\mathrm{1}} ^{\mathrm{4}} =\mathrm{4}\: \\ $$$${possibilities},\:{i}.{e}. \\ $$$$\mathrm{1}\:\:\mathrm{2}\:\:\:\mathrm{3}\:\:\:\mathrm{4} \\ $$$${G}\:{B}\:{B}\:{B} \\ $$$${B}\:{G}\:{B}\:{B} \\ $$$${B}\:{B}\:{G}\:{B} \\ $$$${B}\:{B}\:{B}\:{G} \\ $$$${so}\:{the}\:{probability}\:{is}\:\frac{\mathrm{4}}{\mathrm{2}^{\mathrm{4}} }=\frac{\mathrm{1}}{\mathrm{4}}. \\ $$$$\left({b}\right) \\ $$$${two}\:{children}\:{are}\:{boys},\:{there}\:{are} \\ $$$${C}_{\mathrm{2}} ^{\mathrm{4}} =\mathrm{6}\:{possibilities},\:{i}.{e}. \\ $$$$\mathrm{1}\:\:\:\mathrm{2}\:\:\mathrm{3}\:\:\mathrm{4} \\ $$$${B}\:{B}\:{G}\:{G} \\ $$$${B}\:{G}\:{B}\:{G} \\ $$$${B}\:{G}\:{G}\:{B} \\ $$$${G}\:{B}\:{B}\:{G} \\ $$$${G}\:{B}\:{G}\:{B} \\ $$$${G}\:{G}\:{B}\:{B} \\ $$$${probability}\:{is}\:\frac{\mathrm{6}}{\mathrm{2}^{\mathrm{4}} }=\frac{\mathrm{3}}{\mathrm{8}} \\ $$

Commented by Tawa11 last updated on 06/Sep/21

Great sir

$$\mathrm{Great}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com