Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 5948 by 123456 last updated on 06/Jun/16

is there a_n  such that Σa_n  and Πa_n   converge?

$$\mathrm{is}\:\mathrm{there}\:{a}_{{n}} \:\mathrm{such}\:\mathrm{that}\:\Sigma{a}_{{n}} \:\mathrm{and}\:\Pi{a}_{{n}} \\ $$$$\mathrm{converge}? \\ $$

Answered by Yozzii last updated on 06/Jun/16

Yes. Let a_n =r^n  where  ∣r∣<1.  ⇒Σ_(n=1) ^∞ r^n =(r/(1−r)) and Π_(n=1) ^∞ r^n =lim_(N→∞) Π_(n=1) ^N r^n =lim_(N→∞) r^(0.5N(N+1)) =r^∞ =0.  So, ∃a_n ∈R such that Σa_n  and Πa_n   both comverge. More interesting  examples could be found.

$${Yes}.\:{Let}\:{a}_{{n}} ={r}^{{n}} \:{where}\:\:\mid{r}\mid<\mathrm{1}. \\ $$$$\Rightarrow\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}{r}^{{n}} =\frac{{r}}{\mathrm{1}−{r}}\:{and}\:\underset{{n}=\mathrm{1}} {\overset{\infty} {\prod}}{r}^{{n}} =\underset{{N}\rightarrow\infty} {\mathrm{lim}}\underset{{n}=\mathrm{1}} {\overset{{N}} {\prod}}{r}^{{n}} =\underset{{N}\rightarrow\infty} {\mathrm{lim}}{r}^{\mathrm{0}.\mathrm{5}{N}\left({N}+\mathrm{1}\right)} ={r}^{\infty} =\mathrm{0}. \\ $$$${So},\:\exists{a}_{{n}} \in\mathbb{R}\:{such}\:{that}\:\Sigma{a}_{{n}} \:{and}\:\Pi{a}_{{n}} \\ $$$${both}\:{comverge}.\:{More}\:{interesting} \\ $$$${examples}\:{could}\:{be}\:{found}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com