Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 206036 by Davidtim last updated on 05/Apr/24

is it a polynomial?  2x^2 +3x−(2/x^(−2) )

$${is}\:{it}\:{a}\:{polynomial}? \\ $$$$\mathrm{2}{x}^{\mathrm{2}} +\mathrm{3}{x}−\frac{\mathrm{2}}{{x}^{−\mathrm{2}} } \\ $$

Answered by Frix last updated on 05/Apr/24

(2/x^(−2) )=2x^2  ⇒2x^2 +3x−(2/x^(−2) )=3x  Which is a polynomial.

$$\frac{\mathrm{2}}{{x}^{−\mathrm{2}} }=\mathrm{2}{x}^{\mathrm{2}} \:\Rightarrow\mathrm{2}{x}^{\mathrm{2}} +\mathrm{3}{x}−\frac{\mathrm{2}}{{x}^{−\mathrm{2}} }=\mathrm{3}{x} \\ $$$$\mathrm{Which}\:\mathrm{is}\:\mathrm{a}\:\mathrm{polynomial}. \\ $$

Commented by A5T last updated on 05/Apr/24

If we were to consider it in the state before  simplication, then f(0) would not exist.  (2/x^(−2) )=2x^2  if x≠0

$${If}\:{we}\:{were}\:{to}\:{consider}\:{it}\:{in}\:{the}\:{state}\:{before} \\ $$$${simplication},\:{then}\:{f}\left(\mathrm{0}\right)\:{would}\:{not}\:{exist}. \\ $$$$\frac{\mathrm{2}}{{x}^{−\mathrm{2}} }=\mathrm{2}{x}^{\mathrm{2}} \:{if}\:{x}\neq\mathrm{0} \\ $$

Commented by Frix last updated on 05/Apr/24

You′re right.

$$\mathrm{You}'\mathrm{re}\:\mathrm{right}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com