Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 30419 by abdo imad last updated on 22/Feb/18

integrate (1+x^2 )y^′  +xy −2x=0 with cond.y(1)=0

$${integrate}\:\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}^{'} \:+{xy}\:−\mathrm{2}{x}=\mathrm{0}\:{with}\:{cond}.{y}\left(\mathrm{1}\right)=\mathrm{0} \\ $$

Answered by sma3l2996 last updated on 24/Feb/18

(1+x^2 )y′=x(2−y)  (dy/(2−y))=(x/(1+x^2 ))dx  −ln∣2−y∣=(1/2)ln∣C(1+x^2 )∣  (1/(2−y))=(√(C(1+x^2 )))  y=2−(1/(√(C(1+x^2 ))))  y(1)=0⇒(1/(√(2C)))=2⇔C=(1/8)  so  y(x)=2(1−((√2)/(√(1+x^2 ))))

$$\left(\mathrm{1}+{x}^{\mathrm{2}} \right){y}'={x}\left(\mathrm{2}−{y}\right) \\ $$$$\frac{{dy}}{\mathrm{2}−{y}}=\frac{{x}}{\mathrm{1}+{x}^{\mathrm{2}} }{dx} \\ $$$$−{ln}\mid\mathrm{2}−{y}\mid=\frac{\mathrm{1}}{\mathrm{2}}{ln}\mid{C}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)\mid \\ $$$$\frac{\mathrm{1}}{\mathrm{2}−{y}}=\sqrt{{C}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)} \\ $$$${y}=\mathrm{2}−\frac{\mathrm{1}}{\sqrt{{C}\left(\mathrm{1}+{x}^{\mathrm{2}} \right)}} \\ $$$${y}\left(\mathrm{1}\right)=\mathrm{0}\Rightarrow\frac{\mathrm{1}}{\sqrt{\mathrm{2}{C}}}=\mathrm{2}\Leftrightarrow{C}=\frac{\mathrm{1}}{\mathrm{8}} \\ $$$${so}\:\:{y}\left({x}\right)=\mathrm{2}\left(\mathrm{1}−\frac{\sqrt{\mathrm{2}}}{\sqrt{\mathrm{1}+{x}^{\mathrm{2}} }}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com