Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 204707 by Mummyjay last updated on 25/Feb/24

integrate ∫_0 ^∞ (e^(−x^2 ) /(1+e^x ))dx

$$\boldsymbol{{integrate}}\:\int_{\mathrm{0}} ^{\infty} \frac{\boldsymbol{{e}}^{−\boldsymbol{{x}}^{\mathrm{2}} } }{\mathrm{1}+\boldsymbol{{e}}^{\boldsymbol{{x}}} }\boldsymbol{{dx}} \\ $$

Answered by witcher3 last updated on 26/Feb/24

Ω=∫_0 ^∞ (e^(−x^2 −x) /(1+e^(−x) ))dx=Σ_(n≥0) (−1)^n ∫_0 ^∞ e^(−(x^2 +(1+n)x)) dx  x=(1+n)y  =Σ_(n≥0) (−1)^n (n+1)∫_0 ^∞ e^(−(1+n)^2 ((y+(1/2))^2 −(1/4))) dy;(1+n)(y+(1/2))=z  =Σ_(n≥0) (−1)^n e^((((1+n)/2))^2 ) ∫_((n+1)/2) ^∞ e^(−z^2 ) dz  (2/( (√π)))∫_0 ^x e^(−t^2 ) dt.erfc(x)  =Σ_(n≥0) (−1)^n e^((((1+n)/2))^2 ) .(((√π)/2)−((√π)/2)erfc(((n+1)/2)))  =((√π)/2)Σ_(n≥0) (−1)^n e^((((1+n)/2))^2 ) (1−erfc(((n+1)/2)))

$$\Omega=\int_{\mathrm{0}} ^{\infty} \frac{\mathrm{e}^{−\mathrm{x}^{\mathrm{2}} −\mathrm{x}} }{\mathrm{1}+\mathrm{e}^{−\mathrm{x}} }\mathrm{dx}=\underset{\mathrm{n}\geqslant\mathrm{0}} {\sum}\left(−\mathrm{1}\right)^{\mathrm{n}} \int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\left(\mathrm{x}^{\mathrm{2}} +\left(\mathrm{1}+\mathrm{n}\right)\mathrm{x}\right)} \mathrm{dx} \\ $$$$\mathrm{x}=\left(\mathrm{1}+\mathrm{n}\right)\mathrm{y} \\ $$$$=\underset{\mathrm{n}\geqslant\mathrm{0}} {\sum}\left(−\mathrm{1}\right)^{\mathrm{n}} \left(\mathrm{n}+\mathrm{1}\right)\int_{\mathrm{0}} ^{\infty} \mathrm{e}^{−\left(\mathrm{1}+\mathrm{n}\right)^{\mathrm{2}} \left(\left(\mathrm{y}+\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}\right)} \mathrm{dy};\left(\mathrm{1}+\mathrm{n}\right)\left(\mathrm{y}+\frac{\mathrm{1}}{\mathrm{2}}\right)=\mathrm{z} \\ $$$$=\underset{\mathrm{n}\geqslant\mathrm{0}} {\sum}\left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{e}^{\left(\frac{\mathrm{1}+\mathrm{n}}{\mathrm{2}}\right)^{\mathrm{2}} } \int_{\frac{\mathrm{n}+\mathrm{1}}{\mathrm{2}}} ^{\infty} \mathrm{e}^{−\mathrm{z}^{\mathrm{2}} } \mathrm{dz} \\ $$$$\frac{\mathrm{2}}{\:\sqrt{\pi}}\int_{\mathrm{0}} ^{\mathrm{x}} \mathrm{e}^{−\mathrm{t}^{\mathrm{2}} } \mathrm{dt}.\mathrm{erfc}\left(\mathrm{x}\right) \\ $$$$=\underset{\mathrm{n}\geqslant\mathrm{0}} {\sum}\left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{e}^{\left(\frac{\mathrm{1}+\mathrm{n}}{\mathrm{2}}\right)^{\mathrm{2}} } .\left(\frac{\sqrt{\pi}}{\mathrm{2}}−\frac{\sqrt{\pi}}{\mathrm{2}}\mathrm{erfc}\left(\frac{\mathrm{n}+\mathrm{1}}{\mathrm{2}}\right)\right) \\ $$$$=\frac{\sqrt{\pi}}{\mathrm{2}}\underset{\mathrm{n}\geqslant\mathrm{0}} {\sum}\left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{e}^{\left(\frac{\mathrm{1}+\mathrm{n}}{\mathrm{2}}\right)^{\mathrm{2}} } \left(\mathrm{1}−\mathrm{erfc}\left(\frac{\mathrm{n}+\mathrm{1}}{\mathrm{2}}\right)\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com