Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 132674 by aurpeyz last updated on 15/Feb/21

integral of e^(−2ax^2 )

$${integral}\:{of}\:{e}^{−\mathrm{2}{ax}^{\mathrm{2}} } \\ $$

Answered by Olaf last updated on 15/Feb/21

Let Ω_a (x) = ∫_0 ^x e^(−2at^2 ) dt  1) a = 0  Ω_0 (x) = ∫_0 ^x dt = x  2) a > 0  Let u = (√(2a))t  Ω_a (x) = ∫_0 ^((√(2a))x) e^(−u^2 ) .(du/( (√(2a))))  Ω_a (x) = ((√π)/( 2(√(2a))))((2/( (√π)))∫_0 ^((√(2a))x) e^(−u^2 ) du)  Ω_a (x) = (√(π/(8a))).erf((√(2a))x)  3) a < 0  Let u = i(√(−2a))t  Ω_a (x) = ∫_0 ^(i(√(−2a))x) e^(−u^2 ) .(du/( i(√(−2a))))  Ω_a (x) = ((√π)/( 2i(√(−2a))))((2/( (√π)))∫_0 ^(−i(√(2a))x) e^(−u^2 ) du)  Ω_a (x) = (√(−(π/(8a)))).((erf(i(√(−2a))x))/i)  Ω_a (x) = (√(−(π/(8a)))).erfi((√(−2a))x)

$$\mathrm{Let}\:\Omega_{{a}} \left({x}\right)\:=\:\int_{\mathrm{0}} ^{{x}} {e}^{−\mathrm{2}{at}^{\mathrm{2}} } {dt} \\ $$$$\left.\mathrm{1}\right)\:{a}\:=\:\mathrm{0} \\ $$$$\Omega_{\mathrm{0}} \left({x}\right)\:=\:\int_{\mathrm{0}} ^{{x}} {dt}\:=\:{x} \\ $$$$\left.\mathrm{2}\right)\:{a}\:>\:\mathrm{0} \\ $$$$\mathrm{Let}\:{u}\:=\:\sqrt{\mathrm{2}{a}}{t} \\ $$$$\Omega_{{a}} \left({x}\right)\:=\:\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}{a}}{x}} {e}^{−{u}^{\mathrm{2}} } .\frac{{du}}{\:\sqrt{\mathrm{2}{a}}} \\ $$$$\Omega_{{a}} \left({x}\right)\:=\:\frac{\sqrt{\pi}}{\:\mathrm{2}\sqrt{\mathrm{2}{a}}}\left(\frac{\mathrm{2}}{\:\sqrt{\pi}}\int_{\mathrm{0}} ^{\sqrt{\mathrm{2}{a}}{x}} {e}^{−{u}^{\mathrm{2}} } {du}\right) \\ $$$$\Omega_{{a}} \left({x}\right)\:=\:\sqrt{\frac{\pi}{\mathrm{8}{a}}}.\mathrm{erf}\left(\sqrt{\mathrm{2}{a}}{x}\right) \\ $$$$\left.\mathrm{3}\right)\:{a}\:<\:\mathrm{0} \\ $$$$\mathrm{Let}\:{u}\:=\:{i}\sqrt{−\mathrm{2}{a}}{t} \\ $$$$\Omega_{{a}} \left({x}\right)\:=\:\int_{\mathrm{0}} ^{{i}\sqrt{−\mathrm{2}{a}}{x}} {e}^{−{u}^{\mathrm{2}} } .\frac{{du}}{\:{i}\sqrt{−\mathrm{2}{a}}} \\ $$$$\Omega_{{a}} \left({x}\right)\:=\:\frac{\sqrt{\pi}}{\:\mathrm{2}{i}\sqrt{−\mathrm{2}{a}}}\left(\frac{\mathrm{2}}{\:\sqrt{\pi}}\int_{\mathrm{0}} ^{−{i}\sqrt{\mathrm{2}{a}}{x}} {e}^{−{u}^{\mathrm{2}} } {du}\right) \\ $$$$\Omega_{{a}} \left({x}\right)\:=\:\sqrt{−\frac{\pi}{\mathrm{8}{a}}}.\frac{\mathrm{erf}\left({i}\sqrt{−\mathrm{2}{a}}{x}\right)}{{i}} \\ $$$$\Omega_{{a}} \left({x}\right)\:=\:\sqrt{−\frac{\pi}{\mathrm{8}{a}}}.\mathrm{erfi}\left(\sqrt{−\mathrm{2a}}{x}\right) \\ $$

Commented by aurpeyz last updated on 16/Feb/21

arrrrggggg

$${arrrrggggg} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com