Question and Answers Forum

All Questions      Topic List

Permutation and Combination Questions

Previous in All Question      Next in All Question      

Previous in Permutation and Combination      Next in Permutation and Combination      

Question Number 212686 by mr W last updated on 21/Oct/24

in how many ways can a teacher  divide his 10 studens into 4 groups  such that each group has at least 2   students?

$${in}\:{how}\:{many}\:{ways}\:{can}\:{a}\:{teacher} \\ $$$${divide}\:{his}\:\mathrm{10}\:{studens}\:{into}\:\mathrm{4}\:{groups} \\ $$$${such}\:{that}\:{each}\:{group}\:{has}\:{at}\:{least}\:\mathrm{2}\: \\ $$$${students}? \\ $$

Commented by Spillover last updated on 21/Oct/24

2268000?

$$\mathrm{2268000}? \\ $$

Commented by mr W last updated on 21/Oct/24

how?

$${how}? \\ $$

Commented by Spillover last updated on 21/Oct/24

is it correct?

$${is}\:{it}\:{correct}? \\ $$

Commented by Spillover last updated on 21/Oct/24

((10!)/((2!)^4 ))=2268000

$$\frac{\mathrm{10}!}{\left(\mathrm{2}!\right)^{\mathrm{4}} }=\mathrm{2268000} \\ $$

Answered by mehdee7396 last updated on 21/Oct/24

2/2/2/4  or  2/2/3/3  ⇒ (((    10)),((2,2,2,4)) )+ (((    10)),((2,2,3,3)) )= 44100

$$\mathrm{2}/\mathrm{2}/\mathrm{2}/\mathrm{4}\:\:{or}\:\:\mathrm{2}/\mathrm{2}/\mathrm{3}/\mathrm{3} \\ $$$$\Rightarrow\begin{pmatrix}{\:\:\:\:\mathrm{10}}\\{\mathrm{2},\mathrm{2},\mathrm{2},\mathrm{4}}\end{pmatrix}+\begin{pmatrix}{\:\:\:\:\mathrm{10}}\\{\mathrm{2},\mathrm{2},\mathrm{3},\mathrm{3}}\end{pmatrix}=\:\mathrm{44100}\: \\ $$$$ \\ $$

Commented by mr W last updated on 21/Oct/24

your answer were correct if the  question is to divide the students  into 4 groups for mathmatics,   physics, chemistry and biology   respectively, i.e. distinct objects  into distinct bins. but in this question  we just divide 10 students into 4  (identical) groups.

$${your}\:{answer}\:{were}\:{correct}\:{if}\:{the} \\ $$$${question}\:{is}\:{to}\:{divide}\:{the}\:{students} \\ $$$${into}\:\mathrm{4}\:{groups}\:{for}\:{mathmatics},\: \\ $$$${physics},\:{chemistry}\:{and}\:{biology}\: \\ $$$${respectively},\:{i}.{e}.\:{distinct}\:{objects} \\ $$$${into}\:{distinct}\:{bins}.\:{but}\:{in}\:{this}\:{question} \\ $$$${we}\:{just}\:{divide}\:\mathrm{10}\:{students}\:{into}\:\mathrm{4} \\ $$$$\left({identical}\right)\:{groups}. \\ $$

Commented by mehdee7396 last updated on 21/Oct/24

you are right  ⋛

$${you}\:{are}\:{right}\:\:\underline{\underbrace{\lesseqgtr}} \\ $$

Answered by mr W last updated on 21/Oct/24

2/2/2/4 ⇒((10!)/((2!)^3 3!4!))=3150  2/2/3/3 ⇒((10!)/((2!)^2 2!(3!)^2 2!))=6300  Σ: 3150+6300=9450

$$\mathrm{2}/\mathrm{2}/\mathrm{2}/\mathrm{4}\:\Rightarrow\frac{\mathrm{10}!}{\left(\mathrm{2}!\right)^{\mathrm{3}} \mathrm{3}!\mathrm{4}!}=\mathrm{3150} \\ $$$$\mathrm{2}/\mathrm{2}/\mathrm{3}/\mathrm{3}\:\Rightarrow\frac{\mathrm{10}!}{\left(\mathrm{2}!\right)^{\mathrm{2}} \mathrm{2}!\left(\mathrm{3}!\right)^{\mathrm{2}} \mathrm{2}!}=\mathrm{6300} \\ $$$$\Sigma:\:\mathrm{3150}+\mathrm{6300}=\mathrm{9450} \\ $$

Answered by Spillover last updated on 21/Oct/24

Student=10(n) say  group=4(k)   say  selected student in each group=(2×4)=8  10−8=2  Number of arrangement= (((n+k−1)),((k−1)) )   (((n+k−1)),((k−1)) )= (((2+4−1)),((4−1)) )= ((5),(3) )=10  Total way=((10!)/((2!)^4 ))×10=2268000

$${Student}=\mathrm{10}\left({n}\right)\:{say} \\ $$$${group}=\mathrm{4}\left({k}\right)\:\:\:{say} \\ $$$${selected}\:{student}\:{in}\:{each}\:{group}=\left(\mathrm{2}×\mathrm{4}\right)=\mathrm{8} \\ $$$$\mathrm{10}−\mathrm{8}=\mathrm{2} \\ $$$${Number}\:{of}\:{arrangement}=\begin{pmatrix}{{n}+{k}−\mathrm{1}}\\{{k}−\mathrm{1}}\end{pmatrix} \\ $$$$\begin{pmatrix}{{n}+{k}−\mathrm{1}}\\{{k}−\mathrm{1}}\end{pmatrix}=\begin{pmatrix}{\mathrm{2}+\mathrm{4}−\mathrm{1}}\\{\mathrm{4}−\mathrm{1}}\end{pmatrix}=\begin{pmatrix}{\mathrm{5}}\\{\mathrm{3}}\end{pmatrix}=\mathrm{10} \\ $$$${Total}\:{way}=\frac{\mathrm{10}!}{\left(\mathrm{2}!\right)^{\mathrm{4}} }×\mathrm{10}=\mathrm{2268000} \\ $$

Commented by mr W last updated on 21/Oct/24

this is wrong sir.  to divide 10 distinct objects into 4  identical bins such that no bin is  empty, there are {_4 ^(10) }=S(10,4)=34105  ways. since in our question each bin  should have at least 2 objects, so the  answer should be less than 34105.

$${this}\:{is}\:{wrong}\:{sir}. \\ $$$${to}\:{divide}\:\mathrm{10}\:{distinct}\:{objects}\:{into}\:\mathrm{4} \\ $$$${identical}\:{bins}\:{such}\:{that}\:{no}\:{bin}\:{is} \\ $$$${empty},\:{there}\:{are}\:\left\{_{\mathrm{4}} ^{\mathrm{10}} \right\}={S}\left(\mathrm{10},\mathrm{4}\right)=\mathrm{34105} \\ $$$${ways}.\:{since}\:{in}\:{our}\:{question}\:{each}\:{bin} \\ $$$${should}\:{have}\:{at}\:{least}\:\mathrm{2}\:{objects},\:{so}\:{the} \\ $$$${answer}\:{should}\:{be}\:{less}\:{than}\:\mathrm{34105}. \\ $$

Commented by mr W last updated on 22/Oct/24

{_4 ^(10) } or S(10,4) is the stirling  number of the second kind.

$$\left\{_{\mathrm{4}} ^{\mathrm{10}} \right\}\:{or}\:{S}\left(\mathrm{10},\mathrm{4}\right)\:{is}\:{the}\:{stirling} \\ $$$${number}\:{of}\:{the}\:{second}\:{kind}. \\ $$

Answered by golsendro last updated on 22/Oct/24

(1) (( (((10)),((  2)) )  ((8),(2) )  ((6),(2) )  ((4),(4) ))/(3!))   (2) (( (((10)),((  2)) )  ((8),(2) )  ((6),(3) )  ((3),(3) ))/((2!)^2 ))

$$\left(\mathrm{1}\right)\:\frac{\begin{pmatrix}{\mathrm{10}}\\{\:\:\mathrm{2}}\end{pmatrix}\:\begin{pmatrix}{\mathrm{8}}\\{\mathrm{2}}\end{pmatrix}\:\begin{pmatrix}{\mathrm{6}}\\{\mathrm{2}}\end{pmatrix}\:\begin{pmatrix}{\mathrm{4}}\\{\mathrm{4}}\end{pmatrix}}{\mathrm{3}!} \\ $$$$\:\left(\mathrm{2}\right)\:\frac{\begin{pmatrix}{\mathrm{10}}\\{\:\:\mathrm{2}}\end{pmatrix}\:\begin{pmatrix}{\mathrm{8}}\\{\mathrm{2}}\end{pmatrix}\:\begin{pmatrix}{\mathrm{6}}\\{\mathrm{3}}\end{pmatrix}\:\begin{pmatrix}{\mathrm{3}}\\{\mathrm{3}}\end{pmatrix}}{\left(\mathrm{2}!\right)^{\mathrm{2}} } \\ $$

Commented by golsendro last updated on 22/Oct/24

yes

$$\mathrm{yes} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com