Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 175585 by mnjuly1970 last updated on 03/Sep/22

     in AB^Δ C  prove  that:               sin ((( A)/2) ) ≤ (( a)/( b + c))       ■

$$ \\ $$$$\:\:\:{in}\:{A}\overset{\Delta} {{B}C}\:\:{prove}\:\:{that}: \\ $$$$\:\:\: \\ $$$$\:\:\:\:\:\:\:\:{sin}\:\left(\frac{\:{A}}{\mathrm{2}}\:\right)\:\leqslant\:\frac{\:{a}}{\:{b}\:+\:{c}}\:\:\:\:\:\:\:\blacksquare \\ $$$$ \\ $$

Commented by mahdipoor last updated on 05/Sep/22

(a/(sinA))=(b/(sinB))=(c/(sinC))=2R ⇒  (a/(b+c))=((2R.sinA)/(2R(sinB+sinC)))=((sinA)/(sinB+sinC))=   ((2sin(A/2).cos(A/2))/(sinB+sinC))=  2sin(A/2)((cos(((180−(B+C))/2)))/(sinB+sinC))=  2sin(A/2)((sin(((B+C)/2)))/(2sin(((B+C)/2))cos(((B−C)/2))))=  ((sin(A/2))/(cos((B−C)/2)))  ⇒⇒⇒⇒  sin(A/2)≤(a/(b+c)) ⇔   sin(A/2)≤((sin(A/2))/(cos((B−C)/2))) ⇔  cos(((B−C)/2))≤1

$$\frac{{a}}{{sinA}}=\frac{{b}}{{sinB}}=\frac{{c}}{{sinC}}=\mathrm{2}{R}\:\Rightarrow \\ $$$$\frac{{a}}{{b}+{c}}=\frac{\mathrm{2}{R}.{sinA}}{\mathrm{2}{R}\left({sinB}+{sinC}\right)}=\frac{{sinA}}{{sinB}+{sinC}}= \\ $$$$\:\frac{\mathrm{2}{sin}\left({A}/\mathrm{2}\right).{cos}\left({A}/\mathrm{2}\right)}{{sinB}+{sinC}}= \\ $$$$\mathrm{2}{sin}\left({A}/\mathrm{2}\right)\frac{{cos}\left(\frac{\mathrm{180}−\left({B}+{C}\right)}{\mathrm{2}}\right)}{{sinB}+{sinC}}= \\ $$$$\mathrm{2}{sin}\left({A}/\mathrm{2}\right)\frac{{sin}\left(\frac{{B}+{C}}{\mathrm{2}}\right)}{\mathrm{2}{sin}\left(\frac{{B}+{C}}{\mathrm{2}}\right){cos}\left(\frac{{B}−{C}}{\mathrm{2}}\right)}= \\ $$$$\frac{{sin}\left({A}/\mathrm{2}\right)}{{cos}\left(\left({B}−{C}\right)/\mathrm{2}\right)} \\ $$$$\Rightarrow\Rightarrow\Rightarrow\Rightarrow \\ $$$${sin}\left({A}/\mathrm{2}\right)\leqslant\frac{{a}}{{b}+{c}}\:\Leftrightarrow \\ $$$$\:{sin}\left({A}/\mathrm{2}\right)\leqslant\frac{{sin}\left({A}/\mathrm{2}\right)}{{cos}\left(\left({B}−{C}\right)/\mathrm{2}\right)}\:\Leftrightarrow \\ $$$${cos}\left(\frac{{B}−{C}}{\mathrm{2}}\right)\leqslant\mathrm{1}\: \\ $$

Commented by mnjuly1970 last updated on 03/Sep/22

zendeh bashid ostad mahdipoor   mamnoon.besiar ali bood.

$${zendeh}\:{bashid}\:{ostad}\:{mahdipoor}\: \\ $$$${mamnoon}.{besiar}\:{ali}\:{bood}. \\ $$

Commented by mahdipoor last updated on 03/Sep/22

♥

$$\heartsuit \\ $$

Commented by behi834171 last updated on 03/Sep/22

sir! should use:  R, in sine rule.  r, is the radii of inner circle of AB^▲ C.  ostad mehdipor! deqat lotfan.

$${sir}!\:{should}\:{use}:\:\:\boldsymbol{{R}},\:{in}\:{sine}\:{rule}. \\ $$$$\boldsymbol{{r}},\:{is}\:{the}\:{radii}\:{of}\:{inner}\:{circle}\:{of}\:\boldsymbol{{A}}\overset{\blacktriangle} {\boldsymbol{{B}C}}. \\ $$$${ostad}\:{mehdipor}!\:{deqat}\:{lotfan}. \\ $$

Commented by mnjuly1970 last updated on 04/Sep/22

  eradatmandim ostad ..

$$\:\:{eradatmandim}\:{ostad}\:.. \\ $$

Commented by mahdipoor last updated on 05/Sep/22

mamnoonam , dorostesh kardam

$${mamnoonam}\:,\:{dorostesh}\:{kardam} \\ $$

Answered by behi834171 last updated on 03/Sep/22

sin(A/2)=(√(((p−b)(p−c))/(bc)))⇒  (√(((p−b)(p−c))/(bc)))≤(a/(b+c))⇒  ((√(p(p−a)(p−b)(p−c)))/( (√(p(p−a).abc))))≤((√a)/(b+c))⇒  (S/( (√(p(p−a)4R.S))))≤((√a)/(b+c))⇒((√r)/(2(√((p−a)R))))≤((√a)/(b+c))⇒  ⇒(√(r/R))≤((2(√(a(p−a))))/(b+c))⇒(r/R)≤((4a(p−a))/((b+c)^2 ))  ((4a(p−a))/((b+c)^2 ))=((2a(b+c−a))/((b+c)^2 ))=2(a/(b+c))−2((a/(b+c)))^2   =2t−2t^2   f(t)=2t−2t^2 ⇒(df/dt)=2(1−2t)=0⇒t=(1/2)  f_(min) =2×(1/2)−2×(1/4)=1−(1/2)=(1/2)⇒f≤(1/2)⇒  ⇒(r/R)≤(1/2)⇒R≥2r  .this is true.  [Euler′s rule:  d^2 =R^2 −2R.r=R(R−2r)≥0⇒R≥2r]

$${sin}\frac{{A}}{\mathrm{2}}=\sqrt{\frac{\left({p}−{b}\right)\left({p}−{c}\right)}{{bc}}}\Rightarrow \\ $$$$\sqrt{\frac{\left({p}−{b}\right)\left({p}−{c}\right)}{{bc}}}\leqslant\frac{{a}}{{b}+{c}}\Rightarrow \\ $$$$\frac{\sqrt{{p}\left({p}−{a}\right)\left({p}−{b}\right)\left({p}−{c}\right)}}{\:\sqrt{{p}\left({p}−{a}\right).{abc}}}\leqslant\frac{\sqrt{{a}}}{{b}+{c}}\Rightarrow \\ $$$$\frac{{S}}{\:\sqrt{{p}\left({p}−{a}\right)\mathrm{4}{R}.{S}}}\leqslant\frac{\sqrt{{a}}}{{b}+{c}}\Rightarrow\frac{\sqrt{{r}}}{\mathrm{2}\sqrt{\left({p}−{a}\right){R}}}\leqslant\frac{\sqrt{{a}}}{{b}+{c}}\Rightarrow \\ $$$$\Rightarrow\sqrt{\frac{\boldsymbol{{r}}}{\boldsymbol{{R}}}}\leqslant\frac{\mathrm{2}\sqrt{\boldsymbol{{a}}\left(\boldsymbol{{p}}−\boldsymbol{{a}}\right)}}{\boldsymbol{{b}}+\boldsymbol{{c}}}\Rightarrow\frac{\boldsymbol{{r}}}{\boldsymbol{{R}}}\leqslant\frac{\mathrm{4}\boldsymbol{{a}}\left(\boldsymbol{{p}}−\boldsymbol{{a}}\right)}{\left(\boldsymbol{{b}}+\boldsymbol{{c}}\right)^{\mathrm{2}} } \\ $$$$\frac{\mathrm{4}\boldsymbol{{a}}\left(\boldsymbol{{p}}−\boldsymbol{{a}}\right)}{\left(\boldsymbol{{b}}+\boldsymbol{{c}}\right)^{\mathrm{2}} }=\frac{\mathrm{2}\boldsymbol{{a}}\left(\boldsymbol{{b}}+\boldsymbol{{c}}−\boldsymbol{{a}}\right)}{\left(\boldsymbol{{b}}+\boldsymbol{{c}}\right)^{\mathrm{2}} }=\mathrm{2}\frac{\boldsymbol{{a}}}{\boldsymbol{{b}}+\boldsymbol{{c}}}−\mathrm{2}\left(\frac{\boldsymbol{{a}}}{\boldsymbol{{b}}+\boldsymbol{{c}}}\right)^{\mathrm{2}} \\ $$$$=\mathrm{2}\boldsymbol{{t}}−\mathrm{2}\boldsymbol{{t}}^{\mathrm{2}} \\ $$$$\boldsymbol{{f}}\left(\boldsymbol{{t}}\right)=\mathrm{2}\boldsymbol{{t}}−\mathrm{2}\boldsymbol{{t}}^{\mathrm{2}} \Rightarrow\frac{\boldsymbol{{df}}}{\boldsymbol{{dt}}}=\mathrm{2}\left(\mathrm{1}−\mathrm{2}\boldsymbol{{t}}\right)=\mathrm{0}\Rightarrow\boldsymbol{{t}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\boldsymbol{{f}}_{\boldsymbol{{min}}} =\mathrm{2}×\frac{\mathrm{1}}{\mathrm{2}}−\mathrm{2}×\frac{\mathrm{1}}{\mathrm{4}}=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow\boldsymbol{{f}}\leqslant\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow \\ $$$$\Rightarrow\frac{\boldsymbol{{r}}}{\boldsymbol{{R}}}\leqslant\frac{\mathrm{1}}{\mathrm{2}}\Rightarrow\boldsymbol{{R}}\geqslant\mathrm{2}\boldsymbol{{r}}\:\:.\boldsymbol{{this}}\:\boldsymbol{{is}}\:\boldsymbol{{true}}. \\ $$$$\left[\boldsymbol{{Euler}}'\boldsymbol{{s}}\:\boldsymbol{{rule}}:\right. \\ $$$$\left.\boldsymbol{{d}}^{\mathrm{2}} =\boldsymbol{{R}}^{\mathrm{2}} −\mathrm{2}\boldsymbol{{R}}.\boldsymbol{{r}}=\boldsymbol{{R}}\left(\boldsymbol{{R}}−\mathrm{2}\boldsymbol{{r}}\right)\geqslant\mathrm{0}\Rightarrow\boldsymbol{{R}}\geqslant\mathrm{2}\boldsymbol{{r}}\right] \\ $$$$ \\ $$

Commented by mnjuly1970 last updated on 04/Sep/22

  zendeh bashid ostad bozorgvar  kheili ali bood.

$$\:\:{zendeh}\:{bashid}\:{ostad}\:{bozorgvar} \\ $$$${kheili}\:{ali}\:{bood}. \\ $$

Commented by behi834171 last updated on 04/Sep/22

mamnon.shoma ham binazir hasted.  zende bashid.

$${mamnon}.{shoma}\:{ham}\:{binazir}\:{hasted}. \\ $$$${zende}\:{bashid}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com