Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 170856 by mnjuly1970 last updated on 01/Jun/22

    in AB^Δ C :  cos (A)+cos(B)+cos(C)=(7/4)     (R/r) =?

$$ \\ $$$$\:\:{in}\:{A}\overset{\Delta} {{B}C}\::\:\:{cos}\:\left({A}\right)+{cos}\left({B}\right)+{cos}\left({C}\right)=\frac{\mathrm{7}}{\mathrm{4}} \\ $$$$\:\:\:\frac{{R}}{{r}}\:=? \\ $$

Commented by mr W last updated on 01/Jun/22

cos A+cos B+cos C=(7/4) not possible,  since cos A+cos B+cos C≤(3/2).

$$\mathrm{cos}\:{A}+\mathrm{cos}\:{B}+\mathrm{cos}\:{C}=\frac{\mathrm{7}}{\mathrm{4}}\:{not}\:{possible}, \\ $$$${since}\:\mathrm{cos}\:{A}+\mathrm{cos}\:{B}+\mathrm{cos}\:{C}\leqslant\frac{\mathrm{3}}{\mathrm{2}}. \\ $$

Commented by mnjuly1970 last updated on 02/Jun/22

yes you are right sir ...  i appologize...i think...    sin(A)+sin(B)+sin(B)=^?  1+(r/R)      ≤^(R≥2r)  1+(1/2)=(3/2)

$${yes}\:{you}\:{are}\:{right}\:{sir}\:... \\ $$$${i}\:{appologize}...{i}\:{think}... \\ $$$$\:\:{sin}\left({A}\right)+{sin}\left({B}\right)+{sin}\left({B}\right)\overset{?} {=}\:\mathrm{1}+\frac{{r}}{{R}} \\ $$$$\:\:\:\:\overset{{R}\geqslant\mathrm{2}{r}} {\leqslant}\:\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{3}}{\mathrm{2}}\:\:\:\: \\ $$

Answered by mr W last updated on 01/Jun/22

assume cos A+cos B+cos C=(5/4).    a=2R sin A, b=2R sin B, c=2R sin C  Δ=((ab sin C)/2)  r=((2Δ)/(a+b+c))  (R/r)=((R(a+b+c))/(2Δ))  (R/r)=((R(a+b+c))/(ab sin C))  (R/r)=((2R^2 (sin A+sin B+sin C))/(4R^2  sin A sin B sin C))  (R/r)=((sin A+sin B+sin C)/(2 sin A sin B sin C))  (R/r)=((4 cos (A/2) cos (B/2) cos (C/2))/(16  sin (A/2)cos (C/2) sin (B/2)cos (B/2) sin (C/2)cos (C/2) ))  (R/r)=(1/(4  sin (A/2) sin (B/2) sin (C/2) ))  (R/r)=(1/(cos A+cos B+cos C−1 ))  (R/r)=(1/((5/4)−1 ))=4 ✓

$${assume}\:\mathrm{cos}\:{A}+\mathrm{cos}\:{B}+\mathrm{cos}\:{C}=\frac{\mathrm{5}}{\mathrm{4}}. \\ $$$$ \\ $$$${a}=\mathrm{2}{R}\:\mathrm{sin}\:{A},\:{b}=\mathrm{2}{R}\:\mathrm{sin}\:{B},\:{c}=\mathrm{2}{R}\:\mathrm{sin}\:{C} \\ $$$$\Delta=\frac{{ab}\:\mathrm{sin}\:{C}}{\mathrm{2}} \\ $$$${r}=\frac{\mathrm{2}\Delta}{{a}+{b}+{c}} \\ $$$$\frac{{R}}{{r}}=\frac{{R}\left({a}+{b}+{c}\right)}{\mathrm{2}\Delta} \\ $$$$\frac{{R}}{{r}}=\frac{{R}\left({a}+{b}+{c}\right)}{{ab}\:\mathrm{sin}\:{C}} \\ $$$$\frac{{R}}{{r}}=\frac{\mathrm{2}{R}^{\mathrm{2}} \left(\mathrm{sin}\:{A}+\mathrm{sin}\:{B}+\mathrm{sin}\:{C}\right)}{\mathrm{4}{R}^{\mathrm{2}} \:\mathrm{sin}\:{A}\:\mathrm{sin}\:{B}\:\mathrm{sin}\:{C}} \\ $$$$\frac{{R}}{{r}}=\frac{\mathrm{sin}\:{A}+\mathrm{sin}\:{B}+\mathrm{sin}\:{C}}{\mathrm{2}\:\mathrm{sin}\:{A}\:\mathrm{sin}\:{B}\:\mathrm{sin}\:{C}} \\ $$$$\frac{{R}}{{r}}=\frac{\mathrm{4}\:\mathrm{cos}\:\frac{{A}}{\mathrm{2}}\:\mathrm{cos}\:\frac{{B}}{\mathrm{2}}\:\mathrm{cos}\:\frac{{C}}{\mathrm{2}}}{\mathrm{16}\:\:\mathrm{sin}\:\frac{{A}}{\mathrm{2}}\mathrm{cos}\:\frac{{C}}{\mathrm{2}}\:\mathrm{sin}\:\frac{{B}}{\mathrm{2}}\mathrm{cos}\:\frac{{B}}{\mathrm{2}}\:\mathrm{sin}\:\frac{{C}}{\mathrm{2}}\mathrm{cos}\:\frac{{C}}{\mathrm{2}}\:} \\ $$$$\frac{{R}}{{r}}=\frac{\mathrm{1}}{\mathrm{4}\:\:\mathrm{sin}\:\frac{{A}}{\mathrm{2}}\:\mathrm{sin}\:\frac{{B}}{\mathrm{2}}\:\mathrm{sin}\:\frac{{C}}{\mathrm{2}}\:} \\ $$$$\frac{{R}}{{r}}=\frac{\mathrm{1}}{\mathrm{cos}\:{A}+\mathrm{cos}\:{B}+\mathrm{cos}\:{C}−\mathrm{1}\:} \\ $$$$\frac{{R}}{{r}}=\frac{\mathrm{1}}{\frac{\mathrm{5}}{\mathrm{4}}−\mathrm{1}\:}=\mathrm{4}\:\checkmark \\ $$

Commented by MJS_new last updated on 01/Jun/22

I think there′s no such triangle

$$\mathrm{I}\:\mathrm{think}\:\mathrm{there}'\mathrm{s}\:\mathrm{no}\:\mathrm{such}\:\mathrm{triangle} \\ $$

Commented by mr W last updated on 01/Jun/22

you are right sir!  cos A+cos B+cos C must be ≤(3/2).

$${you}\:{are}\:{right}\:{sir}! \\ $$$$\mathrm{cos}\:{A}+\mathrm{cos}\:{B}+\mathrm{cos}\:{C}\:{must}\:{be}\:\leqslant\frac{\mathrm{3}}{\mathrm{2}}. \\ $$

Commented by mnjuly1970 last updated on 02/Jun/22

  thanks  alot...

$$\:\:{thanks}\:\:{alot}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com