Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 67518 by mathmax by abdo last updated on 28/Aug/19

if z =x+iy   find  lnz  interms of x and y

$${if}\:{z}\:={x}+{iy}\:\:\:{find}\:\:{lnz}\:\:{interms}\:{of}\:{x}\:{and}\:{y} \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 30/Aug/19

z =∣z∣ e^(i arctan(((im(z))/(re(z)))))   but ∣z∣=(√(x^(2 ) +y^2 )) ⇒z =(√(x^2  +y^2 ))e^(iarctan((y/x)))   if x≠0 ⇒ln(z) =(1/2)ln(x^2  +y^2 )+iarctan((y/x))  if x=0 ⇒z =iy ⇒ln(z) =ln(i)+ln(y) =((iπ)/2) +ln(y).

$${z}\:=\mid{z}\mid\:{e}^{{i}\:{arctan}\left(\frac{{im}\left({z}\right)}{{re}\left({z}\right)}\right)} \:\:{but}\:\mid{z}\mid=\sqrt{{x}^{\mathrm{2}\:} +{y}^{\mathrm{2}} }\:\Rightarrow{z}\:=\sqrt{{x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} }{e}^{{iarctan}\left(\frac{{y}}{{x}}\right)} \\ $$$${if}\:{x}\neq\mathrm{0}\:\Rightarrow{ln}\left({z}\right)\:=\frac{\mathrm{1}}{\mathrm{2}}{ln}\left({x}^{\mathrm{2}} \:+{y}^{\mathrm{2}} \right)+{iarctan}\left(\frac{{y}}{{x}}\right) \\ $$$${if}\:{x}=\mathrm{0}\:\Rightarrow{z}\:={iy}\:\Rightarrow{ln}\left({z}\right)\:={ln}\left({i}\right)+{ln}\left({y}\right)\:=\frac{{i}\pi}{\mathrm{2}}\:+{ln}\left({y}\right). \\ $$

Answered by mr W last updated on 28/Aug/19

z=x+iy=(√(x^2 +y^2 ))e^(i tan^(−1) (y/x))   ⇒ln z=((ln (x^2 +y^2 ))/2)+i tan^(−1) (y/x)

$${z}={x}+{iy}=\sqrt{{x}^{\mathrm{2}} +{y}^{\mathrm{2}} }{e}^{{i}\:\mathrm{tan}^{−\mathrm{1}} \frac{{y}}{{x}}} \\ $$$$\Rightarrow\boldsymbol{\mathrm{ln}}\:\boldsymbol{{z}}=\frac{\boldsymbol{\mathrm{ln}}\:\left(\boldsymbol{{x}}^{\mathrm{2}} +\boldsymbol{{y}}^{\mathrm{2}} \right)}{\mathrm{2}}+\boldsymbol{{i}}\:\boldsymbol{\mathrm{tan}}^{−\mathrm{1}} \frac{\boldsymbol{{y}}}{\boldsymbol{{x}}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com