Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 205013 by mathlove last updated on 05/Mar/24

if y=(x)^(1/7)  prove that  y^′ =(1/(7 (x^6 )^(1/7) ))

$${if}\:{y}=\sqrt[{\mathrm{7}}]{{x}}\:{prove}\:{that} \\ $$$${y}^{'} =\frac{\mathrm{1}}{\mathrm{7}\:\sqrt[{\mathrm{7}}]{{x}^{\mathrm{6}} }} \\ $$

Answered by Frix last updated on 05/Mar/24

y=x^r  ⇒ y′=rx^(r−1) ; r≠0  y=(x)^(1/7) =x^(1/7)  ⇒ y′=(1/7)x^(−(6/7)) =(1/(7(x^6 )^(1/7) ))

$${y}={x}^{{r}} \:\Rightarrow\:{y}'={rx}^{{r}−\mathrm{1}} ;\:{r}\neq\mathrm{0} \\ $$$${y}=\sqrt[{\mathrm{7}}]{{x}}={x}^{\frac{\mathrm{1}}{\mathrm{7}}} \:\Rightarrow\:{y}'=\frac{\mathrm{1}}{\mathrm{7}}{x}^{−\frac{\mathrm{6}}{\mathrm{7}}} =\frac{\mathrm{1}}{\mathrm{7}\sqrt[{\mathrm{7}}]{{x}^{\mathrm{6}} }} \\ $$

Answered by MM42 last updated on 06/Mar/24

f′(x)=lim_(h→0) ((((x+h))^(1/7) −(x)^(1/7) )/h)  =lim_(h→0) (h/(h((((x+h)^6 ))^(1/7) +(((x+h)^5 x))^(1/7) +...+(x^6 )^(1/7) )))  =(1/( 7(x^6 )^(1/7) ))  ✓

$${f}'\left({x}\right)={lim}_{{h}\rightarrow\mathrm{0}} \frac{\sqrt[{\mathrm{7}}]{{x}+{h}}−\sqrt[{\mathrm{7}}]{{x}}}{{h}} \\ $$$$={lim}_{{h}\rightarrow\mathrm{0}} \frac{{h}}{{h}\left(\sqrt[{\mathrm{7}}]{\left({x}+{h}\right)^{\mathrm{6}} }+\sqrt[{\mathrm{7}}]{\left({x}+{h}\right)^{\mathrm{5}} {x}}+...+\sqrt[{\mathrm{7}}]{{x}^{\mathrm{6}} }\right)} \\ $$$$=\frac{\mathrm{1}}{\:\mathrm{7}\sqrt[{\mathrm{7}}]{{x}^{\mathrm{6}} }}\:\:\checkmark \\ $$$$ \\ $$

Commented by mathlove last updated on 06/Mar/24

thanks

$${thanks} \\ $$

Commented by TonyCWX08 last updated on 06/Mar/24

Wrong!  Derivative of ((x ))^(1/7)   =(1/(7(x^6 )^(1/7) ))

$${Wrong}! \\ $$$${Derivative}\:{of}\:\sqrt[{\mathrm{7}}]{{x}\:} \\ $$$$=\frac{\mathrm{1}}{\mathrm{7}\sqrt[{\mathrm{7}}]{{x}^{\mathrm{6}} }} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com