Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 190660 by vishal1234 last updated on 08/Apr/23

if y = sin^(−1) (2x(√(1−x^2 ))) where x∈[−(1/( (√2))), (1/( (√2)))], then find (dy/dx).

$${if}\:{y}\:=\:{sin}^{−\mathrm{1}} \left(\mathrm{2}{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right)\:{where}\:{x}\in\left[−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}},\:\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}\right],\:{then}\:{find}\:\frac{{dy}}{{dx}}. \\ $$

Answered by BaliramKumar last updated on 08/Apr/23

let, x = sinθ ⇒ θ = sin^(−1) x  y = sin^(−1) (2sinθ(√(1−sin^2 θ)))  y = sin^(−1) (2sinθ(√(cos^2 θ)))  y = sin^(−1) (2sinθ∙cosθ)  y = sin^(−1) (sin2θ)  y = 2θ = 2sin^(−1) x  (dy/dx) = 2((1/( (√(1−x^2 ))))) = (2/( (√(1−x^2 ))))

$$\mathrm{let},\:{x}\:=\:{sin}\theta\:\Rightarrow\:\theta\:=\:{sin}^{−\mathrm{1}} {x} \\ $$$${y}\:=\:{sin}^{−\mathrm{1}} \left(\mathrm{2}{sin}\theta\sqrt{\mathrm{1}−{sin}^{\mathrm{2}} \theta}\right) \\ $$$${y}\:=\:{sin}^{−\mathrm{1}} \left(\mathrm{2}{sin}\theta\sqrt{{cos}^{\mathrm{2}} \theta}\right) \\ $$$${y}\:=\:{sin}^{−\mathrm{1}} \left(\mathrm{2}{sin}\theta\centerdot{cos}\theta\right) \\ $$$${y}\:=\:{sin}^{−\mathrm{1}} \left({sin}\mathrm{2}\theta\right) \\ $$$${y}\:=\:\mathrm{2}\theta\:=\:\mathrm{2}{sin}^{−\mathrm{1}} {x} \\ $$$$\frac{{dy}}{{dx}}\:=\:\mathrm{2}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\right)\:=\:\frac{\mathrm{2}}{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\: \\ $$$$ \\ $$$$ \\ $$

Commented by vishal1234 last updated on 14/Apr/23

what will happen,? if we take x = cosθ?

$${what}\:{will}\:{happen},?\:{if}\:{we}\:{take}\:{x}\:=\:{cos}\theta? \\ $$

Answered by horsebrand11 last updated on 09/Apr/23

 y=sin^(−1) (2x(√(1−x^2 )))   2x(√(1−x^2 )) = sin y   2(√(1−x^2 ))+2x(((−2x)/(2(√(1−x^2 )))))= cos y .(dy/dx)   2(√(1−x^2 ))−((2x^2 )/( (√(1−x^2 )))) = cos y. (dy/dx)   ((2−4x^2 )/( (√(1−x^2 )))) .(1/( (√(1−4x^2 (1−x^2 ))))) = (dy/dx)   (dy/dx) = ((2−4x^2 )/( (√(1−x^2 )) (√(4x^4 −4x^2 +1))))    (dy/dx) = ((2−4x^2 )/((2x−1)(√(1−x^2 ))))

$$\:{y}=\mathrm{sin}^{−\mathrm{1}} \left(\mathrm{2}{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\right) \\ $$$$\:\mathrm{2}{x}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:=\:\mathrm{sin}\:{y} \\ $$$$\:\mathrm{2}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }+\mathrm{2}{x}\left(\frac{−\mathrm{2}{x}}{\mathrm{2}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\right)=\:\mathrm{cos}\:{y}\:.\frac{{dy}}{{dx}} \\ $$$$\:\mathrm{2}\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }−\frac{\mathrm{2}{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:=\:\mathrm{cos}\:{y}.\:\frac{{dy}}{{dx}} \\ $$$$\:\frac{\mathrm{2}−\mathrm{4}{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\:.\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}−\mathrm{4}{x}^{\mathrm{2}} \left(\mathrm{1}−{x}^{\mathrm{2}} \right)}}\:=\:\frac{{dy}}{{dx}} \\ $$$$\:\frac{{dy}}{{dx}}\:=\:\frac{\mathrm{2}−\mathrm{4}{x}^{\mathrm{2}} }{\:\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }\:\sqrt{\mathrm{4}{x}^{\mathrm{4}} −\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}}}\: \\ $$$$\:\frac{{dy}}{{dx}}\:=\:\frac{\mathrm{2}−\mathrm{4}{x}^{\mathrm{2}} }{\left(\mathrm{2}{x}−\mathrm{1}\right)\sqrt{\mathrm{1}−{x}^{\mathrm{2}} }}\: \\ $$

Commented by som(math1967) last updated on 09/Apr/23

4x^4 −4x^2 +1=(2x^2 −1)^2  or(1−2x^2 )^2

$$\mathrm{4}{x}^{\mathrm{4}} −\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}=\left(\mathrm{2}{x}^{\mathrm{2}} −\mathrm{1}\right)^{\mathrm{2}} \:{or}\left(\mathrm{1}−\mathrm{2}{x}^{\mathrm{2}} \right)^{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com