Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 147582 by mathdanisur last updated on 22/Jul/21

if  x;y;z>0  prove that  ((x^3 +y^3 +z^3 )/(xyz)) ≥ 2((x/(y+z)) + (y/(z+x)) + (z/(x+y)))

$${if}\:\:{x};{y};{z}>\mathrm{0}\:\:{prove}\:{that} \\ $$$$\frac{{x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} }{{xyz}}\:\geqslant\:\mathrm{2}\left(\frac{{x}}{{y}+{z}}\:+\:\frac{{y}}{{z}+{x}}\:+\:\frac{{z}}{{x}+{y}}\right) \\ $$

Answered by mitica last updated on 22/Jul/21

m_h ≤m_a ⇒(1/(a+b))≤((a+b)/(4ab))  2Σ(x/(y+z))≤2Σ((x(y+z))/(4yz))=Σ((x^2 (y+z))/(2xyz))=  (1/(2xyz))Σxy(x+y)≤(1/(2xyz))Σ(x^3 +y^3 )=((2(x^3 +y^3 +z^3 ))/(2xyz))=((x^3 +y^3 +z^3 )/(xyz))

$${m}_{{h}} \leqslant{m}_{{a}} \Rightarrow\frac{\mathrm{1}}{{a}+{b}}\leqslant\frac{{a}+{b}}{\mathrm{4}{ab}} \\ $$$$\mathrm{2}\Sigma\frac{{x}}{{y}+{z}}\leqslant\mathrm{2}\Sigma\frac{{x}\left({y}+{z}\right)}{\mathrm{4}{yz}}=\Sigma\frac{{x}^{\mathrm{2}} \left({y}+{z}\right)}{\mathrm{2}{xyz}}= \\ $$$$\frac{\mathrm{1}}{\mathrm{2}{xyz}}\Sigma{xy}\left({x}+{y}\right)\leqslant\frac{\mathrm{1}}{\mathrm{2}{xyz}}\Sigma\left({x}^{\mathrm{3}} +{y}^{\mathrm{3}} \right)=\frac{\mathrm{2}\left({x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} \right)}{\mathrm{2}{xyz}}=\frac{{x}^{\mathrm{3}} +{y}^{\mathrm{3}} +{z}^{\mathrm{3}} }{{xyz}} \\ $$

Commented by mathdanisur last updated on 22/Jul/21

Thank you Sir

$${Thank}\:{you}\:{Sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com