Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 147488 by mathdanisur last updated on 21/Jul/21

if  x;y;z≥1  then:  (1/(3xy−1)) + (1/(3yz−1)) + (1/(3zx−1)) ≥ (3/(2xyz))

$${if}\:\:{x};{y};{z}\geqslant\mathrm{1}\:\:{then}: \\ $$$$\frac{\mathrm{1}}{\mathrm{3}{xy}−\mathrm{1}}\:+\:\frac{\mathrm{1}}{\mathrm{3}{yz}−\mathrm{1}}\:+\:\frac{\mathrm{1}}{\mathrm{3}{zx}−\mathrm{1}}\:\geqslant\:\frac{\mathrm{3}}{\mathrm{2}{xyz}} \\ $$

Answered by mindispower last updated on 21/Jul/21

in firt  1≤xy,xy=((xyz)/z)  ⇒(1/(3xy−1))≥(1/(((3xyz)/z)−xy))=(z/(2xyz))  sam idea⇒(1/(3yz−1))≥(x/(2xyz)),(1/(3xz−1))≥(y/(2xyz))  LH≥(1/(2xyz))(x+y+z)  sinc x:y:z≥1  ⇒x+y+z≥3  ⇒(1/(3xy−1))+(1/(3zx−1))+(1/(3yz−1))≥((1.3)/(2xyz))=(3/(2xyz))

$${in}\:{firt} \\ $$$$\mathrm{1}\leqslant{xy},{xy}=\frac{{xyz}}{{z}} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{3}{xy}−\mathrm{1}}\geqslant\frac{\mathrm{1}}{\frac{\mathrm{3}{xyz}}{{z}}−{xy}}=\frac{{z}}{\mathrm{2}{xyz}} \\ $$$${sam}\:{idea}\Rightarrow\frac{\mathrm{1}}{\mathrm{3}{yz}−\mathrm{1}}\geqslant\frac{{x}}{\mathrm{2}{xyz}},\frac{\mathrm{1}}{\mathrm{3}{xz}−\mathrm{1}}\geqslant\frac{{y}}{\mathrm{2}{xyz}} \\ $$$${LH}\geqslant\frac{\mathrm{1}}{\mathrm{2}{xyz}}\left({x}+{y}+{z}\right) \\ $$$${sinc}\:{x}:{y}:{z}\geqslant\mathrm{1} \\ $$$$\Rightarrow{x}+{y}+{z}\geqslant\mathrm{3} \\ $$$$\Rightarrow\frac{\mathrm{1}}{\mathrm{3}{xy}−\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{3}{zx}−\mathrm{1}}+\frac{\mathrm{1}}{\mathrm{3}{yz}−\mathrm{1}}\geqslant\frac{\mathrm{1}.\mathrm{3}}{\mathrm{2}{xyz}}=\frac{\mathrm{3}}{\mathrm{2}{xyz}} \\ $$$$ \\ $$$$ \\ $$

Commented by mathdanisur last updated on 21/Jul/21

Thank you Ser cool

$${Thank}\:{you}\:{Ser}\:{cool} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com