Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 34169 by Rio Mike last updated on 01/May/18

 if the sum S_4  of the first 4 terms  of a G P is 24 and the sum S_6  of   the first 6 terms is 30 find the   first term and common ratio..

$$\:{if}\:{the}\:{sum}\:{S}_{\mathrm{4}} \:{of}\:{the}\:{first}\:\mathrm{4}\:{terms} \\ $$$${of}\:{a}\:{G}\:{P}\:{is}\:\mathrm{24}\:{and}\:{the}\:{sum}\:{S}_{\mathrm{6}} \:{of}\: \\ $$$${the}\:{first}\:\mathrm{6}\:{terms}\:{is}\:\mathrm{30}\:{find}\:{the}\: \\ $$$${first}\:{term}\:{and}\:{common}\:{ratio}.. \\ $$

Answered by MJS last updated on 02/May/18

...really a GP? You won′t like the solution...  a_0 (1+r+r^2 +r^3 )=24 ⇒ a_0 =((24)/(1+r+r^2 +r^3 ))  a_0 (1+r+r^2 +r^3 +r^4 +r^5 )=30  24((1+r+r^2 +r^3 +r^4 +r^5 )/(1+r+r^2 +r^3 ))=30  24((1+r^2 +r^4 )/(1+r^2 ))=30  r^4 −(1/4)r^2 −(1/4)=0  r^2 =(1/8)±((√(17))/8)  r^2 >0 ⇒ r=±((√(1+(√(17))))/(√8))=−((√(2+2(√(17))))/4) ∨ ((√(2+2(√(17))))/4)  a_0 =(3/8)(4+(√(2+2(√(17)))))(23+(√(17))) ∨ (3/8)(4−(√(2+2(√(17)))))(23+(√(17)))  (r≈−.800243∧a_0 ≈73.2423)∨  (r≈.800243∧a_0 ≈8.12706)

$$...\mathrm{really}\:\mathrm{a}\:\mathrm{GP}?\:\mathrm{You}\:\mathrm{won}'\mathrm{t}\:\mathrm{like}\:\mathrm{the}\:\mathrm{solution}... \\ $$$${a}_{\mathrm{0}} \left(\mathrm{1}+{r}+{r}^{\mathrm{2}} +{r}^{\mathrm{3}} \right)=\mathrm{24}\:\Rightarrow\:{a}_{\mathrm{0}} =\frac{\mathrm{24}}{\mathrm{1}+{r}+{r}^{\mathrm{2}} +{r}^{\mathrm{3}} } \\ $$$${a}_{\mathrm{0}} \left(\mathrm{1}+{r}+{r}^{\mathrm{2}} +{r}^{\mathrm{3}} +{r}^{\mathrm{4}} +{r}^{\mathrm{5}} \right)=\mathrm{30} \\ $$$$\mathrm{24}\frac{\mathrm{1}+{r}+{r}^{\mathrm{2}} +{r}^{\mathrm{3}} +{r}^{\mathrm{4}} +{r}^{\mathrm{5}} }{\mathrm{1}+{r}+{r}^{\mathrm{2}} +{r}^{\mathrm{3}} }=\mathrm{30} \\ $$$$\mathrm{24}\frac{\mathrm{1}+{r}^{\mathrm{2}} +{r}^{\mathrm{4}} }{\mathrm{1}+{r}^{\mathrm{2}} }=\mathrm{30} \\ $$$${r}^{\mathrm{4}} −\frac{\mathrm{1}}{\mathrm{4}}{r}^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{4}}=\mathrm{0} \\ $$$${r}^{\mathrm{2}} =\frac{\mathrm{1}}{\mathrm{8}}\pm\frac{\sqrt{\mathrm{17}}}{\mathrm{8}} \\ $$$${r}^{\mathrm{2}} >\mathrm{0}\:\Rightarrow\:{r}=\pm\frac{\sqrt{\mathrm{1}+\sqrt{\mathrm{17}}}}{\sqrt{\mathrm{8}}}=−\frac{\sqrt{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{17}}}}{\mathrm{4}}\:\vee\:\frac{\sqrt{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{17}}}}{\mathrm{4}} \\ $$$${a}_{\mathrm{0}} =\frac{\mathrm{3}}{\mathrm{8}}\left(\mathrm{4}+\sqrt{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{17}}}\right)\left(\mathrm{23}+\sqrt{\mathrm{17}}\right)\:\vee\:\frac{\mathrm{3}}{\mathrm{8}}\left(\mathrm{4}−\sqrt{\mathrm{2}+\mathrm{2}\sqrt{\mathrm{17}}}\right)\left(\mathrm{23}+\sqrt{\mathrm{17}}\right) \\ $$$$\left({r}\approx−.\mathrm{800243}\wedge{a}_{\mathrm{0}} \approx\mathrm{73}.\mathrm{2423}\right)\vee \\ $$$$\left({r}\approx.\mathrm{800243}\wedge{a}_{\mathrm{0}} \approx\mathrm{8}.\mathrm{12706}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com