Question Number 172124 by Mikenice last updated on 23/Jun/22 | ||
$${if}\:{tan}\theta+{sec}\theta={x},\:{show}\:{that}\: \\ $$$${sin}\theta=\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}} \\ $$ | ||
Commented by infinityaction last updated on 23/Jun/22 | ||
$$\:\:\:\:\:\:\:\frac{\left(\mathrm{1}+\mathrm{sin}\theta\right)^{\mathrm{2}} }{\mathrm{cos}^{\mathrm{2}} \theta\:}\:\:=\:\:{x}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\frac{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \theta+\mathrm{2sin}\theta\:\:}{\mathrm{cos}^{\mathrm{2}} \theta\:}\:=\:\:{x}^{\mathrm{2}} \\ $$$$\:\:\:\:\:\:\:\:\frac{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \theta+\mathrm{2sin}\theta−\mathrm{cos}^{\mathrm{2}} \theta\:\:\:}{\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \theta+\mathrm{2sin}\theta+\mathrm{cos}^{\mathrm{2}} \theta\:\:\:}\:\:=\:\:\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\:\frac{\cancel{\mathrm{2}sin}\theta\cancel{\left(\mathrm{1}+\mathrm{sin}\theta\right)}\:\:}{\cancel{\mathrm{2}}\:\cancel{\left(\mathrm{1}+\mathrm{sin}\theta\right)}\:}\:\:=\:\:\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\:\:\:\:\:\:\:\mathrm{sin}\theta\:\:\:=\:\:\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}}\: \\ $$ | ||
Commented by BaliramSingh last updated on 24/Jun/22 | ||
$${Nice}\:{Solution} \\ $$ | ||
Answered by BaliramSingh last updated on 23/Jun/22 | ||
$$ \\ $$$${sec}\theta+{tan}\theta={x}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.....\:.....\left[\mathrm{1}\right] \\ $$$$\frac{\left({sec}\theta+{tan}\theta\right)\left({sec}\theta−{tan}\theta\right)}{\left({sec}\theta−{tan}\theta\right)}\:=\:{x} \\ $$$$\frac{{sec}^{\mathrm{2}} \theta−{tan}^{\mathrm{2}} \theta}{\left({sec}\theta−{tan}\theta\right)}\:=\:{x} \\ $$$$\frac{\mathrm{1}}{\left({sec}\theta−{tan}\theta\right)}={x}\:\:\:\:\:\:\:\:\:\: \\ $$$${sec}\theta−{tan}\theta\:=\:\frac{\mathrm{1}}{{x}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:...........\left[\mathrm{2}\right] \\ $$$$\:\:\:{by}\:\:\:\:\left[\mathrm{1}\right]+\left[\mathrm{2}\right] \\ $$$$\mathrm{2}{sec}\theta={x}+\frac{\mathrm{1}}{{x}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:............\left[\mathrm{3}\right] \\ $$$$\:\:\:{by}\:\:\:\:\left[\mathrm{1}\right]−\left[\mathrm{2}\right] \\ $$$$\mathrm{2}{tan}\theta={x}−\frac{\mathrm{1}}{{x}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:.............\left[\mathrm{4}\right] \\ $$$${by}\:\:\:\:\:\left[\mathrm{4}\right]\boldsymbol{\div}\left[\mathrm{3}\right] \\ $$$$\:\frac{\mathrm{2}{tan}\theta}{\mathrm{2}{sec}\theta}\:=\:\frac{{x}−\frac{\mathrm{1}}{{x}}}{{x}+\frac{\mathrm{1}}{{x}}} \\ $$$$\frac{\frac{{sin}\theta}{{cos}\theta}}{\frac{\mathrm{1}}{{cos}\theta}}\:=\:\frac{\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}}}{\frac{{x}^{\mathrm{2}} +\mathrm{1}}{{x}}} \\ $$$${sin}\theta\:=\:\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$$ \\ $$ | ||
Commented by peter frank last updated on 23/Jun/22 | ||
$$\mathrm{thank}\:\mathrm{you} \\ $$ | ||
Answered by Plato last updated on 23/Jun/22 | ||
$${soln} \\ $$$$\mathrm{sin}\:\theta=\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\frac{{x}^{\mathrm{2}} −\mathrm{1}}{{x}^{\mathrm{2}} +\mathrm{1}} \\ $$$$\frac{\left(\mathrm{tan}\:\theta+\mathrm{sec}\:\theta\right)^{\mathrm{2}} −\mathrm{1}}{\left(\mathrm{tan}\:\theta+\mathrm{sec}\:\theta\right)^{\mathrm{2}} +\mathrm{1}} \\ $$$$\frac{\mathrm{tan}\:^{\mathrm{2}} \theta+\mathrm{sec}\:^{\mathrm{2}} \theta+\mathrm{2tan}\:\theta\mathrm{sec}\:\theta−\mathrm{1}}{\mathrm{tan}\:^{\mathrm{2}} \theta+\mathrm{sec}\:^{\mathrm{2}} \theta+\mathrm{2tan}\:\theta\mathrm{sec}\:\theta+\mathrm{1}} \\ $$$${but}\:\mathrm{1}+\mathrm{tan}^{\mathrm{2}} \theta=\mathrm{sec}\:^{\mathrm{2}} \theta \\ $$$$\frac{\mathrm{2tan}\:\theta\mathrm{sec}\:\theta+\mathrm{2tan}^{\mathrm{2}} \theta}{\mathrm{2tan}\:\theta\mathrm{sec}\:\theta+\mathrm{2tan}\:^{\mathrm{2}} \theta+\mathrm{2}} \\ $$$${factoring}\:\mathrm{2}\:\: \\ $$$$\frac{\mathrm{tan}\theta\:\mathrm{sec}\theta+\mathrm{tan}^{\mathrm{2}} \theta\:}{\mathrm{tan}\:\theta\mathrm{sec}\:\theta+\mathrm{sec}^{\mathrm{2}} \theta} \\ $$$${divide}\:{by}\:\mathrm{sec}\theta \\ $$$$\frac{\mathrm{tan}\theta+\mathrm{tan}^{\mathrm{2}} \theta\mathrm{cos}\:\theta}{\mathrm{tan}\theta+\frac{\mathrm{1}}{\mathrm{cos}\:\theta}} \\ $$$$\frac{\frac{\mathrm{sin}\theta}{\mathrm{cos}\theta}+\frac{\mathrm{sin}^{\mathrm{2}} \theta}{\mathrm{cos}\theta}}{\:\frac{\mathrm{sin}\theta\:}{\mathrm{cos}\theta\:}+\frac{\mathrm{1}}{\mathrm{cos}\theta}} \\ $$$$\frac{\frac{\mathrm{sin}\theta\left(\mathrm{1}+\mathrm{sin}\theta\right)}{\mathrm{cos}\theta}}{\frac{\mathrm{1}+\mathrm{sin}\theta}{\mathrm{cos}\theta}} \\ $$$$\frac{\mathrm{sin}\theta\left(\mathrm{1}+\mathrm{sin}\theta\right)}{\left(\mathrm{1}+\mathrm{sin}\theta\right)} \\ $$$$=\mathrm{sin}\:\theta \\ $$ | ||