Question Number 58245 by tanmay last updated on 20/Apr/19 | ||
$${if}\:{log}\left({a}+{b}+{c}\right)={loga}+{logb}+{logc} \\ $$$${prove} \\ $$$${log}\left(\frac{\mathrm{2}{a}}{\mathrm{1}−{a}^{\mathrm{2}} }+\frac{\mathrm{2}{b}}{\mathrm{1}−{b}^{\mathrm{2}} }+\frac{\mathrm{2}{c}}{\mathrm{1}−{c}^{\mathrm{2}} }\right)={log}\left(\frac{\mathrm{2}{a}}{\mathrm{1}−{a}^{\mathrm{2}} }\right)+{log}\left(\frac{\mathrm{2}{b}}{\mathrm{1}−{b}^{\mathrm{2}} }\right)+{log}\left(\frac{\mathrm{2}{c}}{\mathrm{1}−{c}^{\mathrm{2}} }\right) \\ $$ | ||
Answered by Kunal12588 last updated on 20/Apr/19 | ||
$${log}\left({a}+{b}+{c}\right)={log}\:{a}\:+\:{log}\:{b}\:+\:{log}\:{c} \\ $$$$\Rightarrow{log}\left({a}+{b}+{c}\right)={log}\left({abc}\right) \\ $$$$\Rightarrow{a}+{b}+{c}={abc} \\ $$$${let}\:\:{a}={tan}\:\alpha={t}_{\mathrm{1}} ,\:\:{b}={tan}\:\beta={t}_{\mathrm{2}} ,\:\:{c}={tan}\:\gamma={t}_{\mathrm{3}} \\ $$$$\therefore\:\:{t}_{\mathrm{1}} +{t}_{\mathrm{2}} +{t}_{\mathrm{3}} ={t}_{\mathrm{1}} {t}_{\mathrm{2}} {t}_{\mathrm{3}} \\ $$$$\Rightarrow{t}_{\mathrm{1}} +{t}_{\mathrm{2}} =−{t}_{\mathrm{3}} \left(\mathrm{1}−{t}_{\mathrm{1}} {t}_{\mathrm{2}} \right) \\ $$$$\Rightarrow−{t}_{\mathrm{3}} =\frac{{t}_{\mathrm{1}} +{t}_{\mathrm{2}} }{\mathrm{1}−{t}_{\mathrm{1}} {t}_{\mathrm{2}} } \\ $$$$\Rightarrow{tan}\left(\pi−\gamma\right)={tan}\left(\alpha+\beta\right) \\ $$$$\Rightarrow\alpha+\beta+\gamma=\pi \\ $$$$\Rightarrow\mathrm{2}\alpha+\mathrm{2}\beta+\mathrm{2}\gamma=\mathrm{2}\pi \\ $$$$\Rightarrow{tan}\left(\mathrm{2}\alpha+\mathrm{2}\beta\right)={tan}\left(\mathrm{2}\pi−\mathrm{2}\gamma\right) \\ $$$$\Rightarrow\frac{{tan}\:\mathrm{2}\alpha\:+\:{tan}\:\mathrm{2}\beta}{\mathrm{1}−{tan}\:\mathrm{2}\alpha\:{tan}\mathrm{2}\beta}=−{tan}\:\mathrm{2}\gamma \\ $$$$\Rightarrow{tan}\:\mathrm{2}\alpha\:+\:{tan}\:\mathrm{2}\beta\:+\:{tan}\:\mathrm{2}\gamma\:=\:{tan}\:\mathrm{2}\alpha\:{tan}\mathrm{2}\beta\:\:{tan}\:\mathrm{2}\gamma \\ $$$$\Rightarrow{log}\left(\frac{\mathrm{2}{t}_{\mathrm{1}} }{\mathrm{1}−{t}_{\mathrm{1}} ^{\mathrm{2}} }+\frac{\mathrm{2}{t}_{\mathrm{2}} }{\mathrm{1}−{t}_{\mathrm{2}} ^{\mathrm{2}} }+\frac{\mathrm{2}{t}_{\mathrm{3}} }{\mathrm{1}−{t}_{\mathrm{3}} ^{\mathrm{2}} }\right)={log}\left(\frac{\mathrm{2}{t}_{\mathrm{1}} }{\mathrm{1}−{t}_{\mathrm{1}} ^{\mathrm{2}} }×\frac{\mathrm{2}{t}_{\mathrm{2}} }{\mathrm{1}−{t}_{\mathrm{2}} ^{\mathrm{2}} }×\frac{\mathrm{2}{t}_{\mathrm{3}} }{\mathrm{1}−{t}_{\mathrm{3}} ^{\mathrm{2}} }\right) \\ $$$$\Rightarrow{log}\left(\frac{\mathrm{2}{a}}{\mathrm{1}−{a}^{\mathrm{2}} }+\frac{\mathrm{2}{b}}{\mathrm{1}−{b}^{\mathrm{2}} }+\frac{\mathrm{2}{c}}{\mathrm{1}−{c}^{\mathrm{2}} }\right)={log}\left(\frac{\mathrm{2}{a}}{\mathrm{1}−{a}^{\mathrm{2}} }\right)+{log}\left(\frac{\mathrm{2}{b}}{\mathrm{1}−{b}^{\mathrm{2}} }\right)+{log}\left(\frac{\mathrm{2}{c}}{\mathrm{1}−{c}^{\mathrm{2}} }\right) \\ $$ | ||
Commented by tanmay last updated on 20/Apr/19 | ||
$${bah}!\:{very}\:{good}\:{excellent}... \\ $$ | ||
Commented by Kunal12588 last updated on 20/Apr/19 | ||
Thank you sir | ||