Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 204360 by esmaeil last updated on 14/Feb/24

if  lim_(x→+∞) [(((a+6)x+1)/(ax+1))]=2→  find the largest and smallest correct  value for a.

$${if} \\ $$$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\left[\frac{\left({a}+\mathrm{6}\right){x}+\mathrm{1}}{{ax}+\mathrm{1}}\right]=\mathrm{2}\rightarrow \\ $$$${find}\:{the}\:{largest}\:{and}\:{smallest}\:{correct} \\ $$$${value}\:{for}\:{a}. \\ $$

Answered by deleteduser1 last updated on 14/Feb/24

=lim_(x→+∞) [((a+6+(1/x))/(a+(1/x)))]=((a+6)/a)=2⇒a=6

$$=\underset{{x}\rightarrow+\infty} {{lim}}\left[\frac{{a}+\mathrm{6}+\frac{\mathrm{1}}{{x}}}{{a}+\frac{\mathrm{1}}{{x}}}\right]=\frac{{a}+\mathrm{6}}{{a}}=\mathrm{2}\Rightarrow{a}=\mathrm{6} \\ $$

Commented by esmaeil last updated on 14/Feb/24

thank  you.  and smallest value?

$${thank}\:\:{you}.\:\:{and}\:{smallest}\:{value}? \\ $$

Commented by esmaeil last updated on 14/Feb/24

2≤((a+6)/a)<3→1≤(6/a)⟨2→  3<a≤6→ { ((a_l =6)),((a_s =4  (a is correct))) :}

$$\mathrm{2}\leqslant\frac{{a}+\mathrm{6}}{{a}}<\mathrm{3}\rightarrow\mathrm{1}\leqslant\frac{\mathrm{6}}{{a}}\langle\mathrm{2}\rightarrow \\ $$$$\mathrm{3}<{a}\leqslant\mathrm{6}\rightarrow\begin{cases}{{a}_{{l}} =\mathrm{6}}\\{{a}_{{s}} =\mathrm{4}\:\:\left({a}\:{is}\:{correct}\right)}\end{cases} \\ $$$$ \\ $$$$ \\ $$

Commented by esmaeil last updated on 14/Feb/24

[((10)/4)]=2

$$\left[\frac{\mathrm{10}}{\mathrm{4}}\right]=\mathrm{2} \\ $$$$ \\ $$

Commented by deleteduser1 last updated on 15/Feb/24

I thought [ ] was just a bracket,if [x] is floor of  x, then [((a+6)/a)]=2<((a+6)/a)≤3⇒3≤a<6  ⇒min(a)=3 and upper bound of a=6

$${I}\:{thought}\:\left[\:\right]\:{was}\:{just}\:{a}\:{bracket},{if}\:\left[{x}\right]\:{is}\:{floor}\:{of} \\ $$$${x},\:{then}\:\left[\frac{{a}+\mathrm{6}}{{a}}\right]=\mathrm{2}<\frac{{a}+\mathrm{6}}{{a}}\leqslant\mathrm{3}\Rightarrow\mathrm{3}\leqslant{a}<\mathrm{6} \\ $$$$\Rightarrow{min}\left({a}\right)=\mathrm{3}\:{and}\:{upper}\:{bound}\:{of}\:{a}=\mathrm{6} \\ $$

Answered by mr W last updated on 15/Feb/24

let t=(1/x)  x→+∞ ⇒t→0^+   lim_(x→+∞) [(((a+6)x+1)/(ax+1))]  =lim_(t→0^+ ) [((a+6+t)/(a+t))]=2  ⇒2<((a+6)/a)≤3  ⇒3≤a<6

$${let}\:{t}=\frac{\mathrm{1}}{{x}} \\ $$$${x}\rightarrow+\infty\:\Rightarrow{t}\rightarrow\mathrm{0}^{+} \\ $$$$\underset{{x}\rightarrow+\infty} {\mathrm{lim}}\left[\frac{\left({a}+\mathrm{6}\right){x}+\mathrm{1}}{{ax}+\mathrm{1}}\right] \\ $$$$=\underset{{t}\rightarrow\mathrm{0}^{+} } {\mathrm{lim}}\left[\frac{{a}+\mathrm{6}+{t}}{{a}+{t}}\right]=\mathrm{2} \\ $$$$\Rightarrow\mathrm{2}<\frac{{a}+\mathrm{6}}{{a}}\leqslant\mathrm{3} \\ $$$$\Rightarrow\mathrm{3}\leqslant{a}<\mathrm{6} \\ $$

Commented by deleteduser1 last updated on 14/Feb/24

It seems 6 doesn′t work.  a=6⇒lim_(x→+∞) [((12x+1)/(6x+1))]=lim_(x→+∞) [((2(6x+1)−1)/(6x+1))]  =lim_(x→+∞) [2−(1/(6x+1))]=1,since 1<2−(1/(6x+1))<2 as  x→+∞.  Even though lim_(x→+∞) 2−(1/(6x+1))=2, it approaches 2  from the negative axis(2^− ),so all values are   less than 2.

$${It}\:{seems}\:\mathrm{6}\:{doesn}'{t}\:{work}. \\ $$$${a}=\mathrm{6}\Rightarrow\underset{{x}\rightarrow+\infty} {{lim}}\left[\frac{\mathrm{12}{x}+\mathrm{1}}{\mathrm{6}{x}+\mathrm{1}}\right]=\underset{{x}\rightarrow+\infty} {{lim}}\left[\frac{\mathrm{2}\left(\mathrm{6}{x}+\mathrm{1}\right)−\mathrm{1}}{\mathrm{6}{x}+\mathrm{1}}\right] \\ $$$$=\underset{{x}\rightarrow+\infty} {{lim}}\left[\mathrm{2}−\frac{\mathrm{1}}{\mathrm{6}{x}+\mathrm{1}}\right]=\mathrm{1},{since}\:\mathrm{1}<\mathrm{2}−\frac{\mathrm{1}}{\mathrm{6}{x}+\mathrm{1}}<\mathrm{2}\:{as} \\ $$$${x}\rightarrow+\infty. \\ $$$${Even}\:{though}\:\underset{{x}\rightarrow+\infty} {{lim}}\mathrm{2}−\frac{\mathrm{1}}{\mathrm{6}{x}+\mathrm{1}}=\mathrm{2},\:{it}\:{approaches}\:\mathrm{2} \\ $$$${from}\:{the}\:{negative}\:{axis}\left(\mathrm{2}^{−} \right),{so}\:{all}\:{values}\:{are}\: \\ $$$${less}\:{than}\:\mathrm{2}. \\ $$

Commented by mr W last updated on 14/Feb/24

you are right. 3≤a<6.

$${you}\:{are}\:{right}.\:\mathrm{3}\leqslant{a}<\mathrm{6}. \\ $$

Answered by deleteduser1 last updated on 14/Feb/24

lim_(x→+∞) [((ax+1+6x)/(ax+1))]=lim_(x→+∞) [((6x)/(ax+1))+1]=2  If 6x<ax+1,then ((6x)/(ax+1))<1⇒[((6x)/(ax+1))+1]<2  ⇒6x≥ax+1⇒a≤((6x−1)/x)=6−(1/x)<6   a<6⇒[((6x)/(ax+1))+1]=[((ax+1+(6−a)x−1)/(ax+1))+1]  =[2+(((6−a)x−1)/(ax+1))]  lim_(x→+∞) (((6−a)x−1)/(ax+1))=((6−a)/a)=(6/a)−1  lim_(x→+∞) [((ax+1+6x)/(ax+1))]=lim_(x→+∞) [2+(((6−a)x−1)/(ax+1))]=2  lim_(x→+∞) (((6−a)x−1)/(ax+1))≤1⇒(6/a)−1≤1⇒a≥3  ⇒3≤a<6

$$\underset{{x}\rightarrow+\infty} {{lim}}\left[\frac{{ax}+\mathrm{1}+\mathrm{6}{x}}{{ax}+\mathrm{1}}\right]=\underset{{x}\rightarrow+\infty} {{lim}}\left[\frac{\mathrm{6}{x}}{{ax}+\mathrm{1}}+\mathrm{1}\right]=\mathrm{2} \\ $$$${If}\:\mathrm{6}{x}<{ax}+\mathrm{1},{then}\:\frac{\mathrm{6}{x}}{{ax}+\mathrm{1}}<\mathrm{1}\Rightarrow\left[\frac{\mathrm{6}{x}}{{ax}+\mathrm{1}}+\mathrm{1}\right]<\mathrm{2} \\ $$$$\Rightarrow\mathrm{6}{x}\geqslant{ax}+\mathrm{1}\Rightarrow{a}\leqslant\frac{\mathrm{6}{x}−\mathrm{1}}{{x}}=\mathrm{6}−\frac{\mathrm{1}}{{x}}<\mathrm{6}\: \\ $$$${a}<\mathrm{6}\Rightarrow\left[\frac{\mathrm{6}{x}}{{ax}+\mathrm{1}}+\mathrm{1}\right]=\left[\frac{{ax}+\mathrm{1}+\left(\mathrm{6}−{a}\right){x}−\mathrm{1}}{{ax}+\mathrm{1}}+\mathrm{1}\right] \\ $$$$=\left[\mathrm{2}+\frac{\left(\mathrm{6}−{a}\right){x}−\mathrm{1}}{{ax}+\mathrm{1}}\right] \\ $$$$\underset{{x}\rightarrow+\infty} {{lim}}\frac{\left(\mathrm{6}−{a}\right){x}−\mathrm{1}}{{ax}+\mathrm{1}}=\frac{\mathrm{6}−{a}}{{a}}=\frac{\mathrm{6}}{{a}}−\mathrm{1} \\ $$$$\underset{{x}\rightarrow+\infty} {{lim}}\left[\frac{{ax}+\mathrm{1}+\mathrm{6}{x}}{{ax}+\mathrm{1}}\right]=\underset{{x}\rightarrow+\infty} {{lim}}\left[\mathrm{2}+\frac{\left(\mathrm{6}−{a}\right){x}−\mathrm{1}}{{ax}+\mathrm{1}}\right]=\mathrm{2} \\ $$$$\underset{{x}\rightarrow+\infty} {{lim}}\frac{\left(\mathrm{6}−{a}\right){x}−\mathrm{1}}{{ax}+\mathrm{1}}\leqslant\mathrm{1}\Rightarrow\frac{\mathrm{6}}{{a}}−\mathrm{1}\leqslant\mathrm{1}\Rightarrow{a}\geqslant\mathrm{3} \\ $$$$\Rightarrow\mathrm{3}\leqslant{a}<\mathrm{6} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com