Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 206458 by mathlove last updated on 15/Apr/24

if f(x)=(√(x−x^2 ))     then  f^(−1) (x)=?

$${if}\:{f}\left({x}\right)=\sqrt{{x}−{x}^{\mathrm{2}} }\:\:\:\:\:{then}\:\:{f}^{−\mathrm{1}} \left({x}\right)=? \\ $$

Answered by Skabetix last updated on 15/Apr/24

f^(−1) (x)=((1±(√(−4x^2 +1)))/2)

$${f}^{−\mathrm{1}} \left({x}\right)=\frac{\mathrm{1}\pm\sqrt{−\mathrm{4}{x}^{\mathrm{2}} +\mathrm{1}}}{\mathrm{2}} \\ $$

Commented by Tinku Tara last updated on 15/Apr/24

If one value gives two result then f(x)  is not invertible

$$\mathrm{If}\:\mathrm{one}\:\mathrm{value}\:\mathrm{gives}\:\mathrm{two}\:\mathrm{result}\:\mathrm{then}\:{f}\left({x}\right) \\ $$$$\mathrm{is}\:\mathrm{not}\:\mathrm{invertible} \\ $$

Commented by mathlove last updated on 15/Apr/24

yes sir

$${yes}\:{sir} \\ $$

Answered by cortano21 last updated on 15/Apr/24

$$\:\:\:\: \\ $$

Answered by Frix last updated on 15/Apr/24

f(x)=(√(x−x^2 ))  0≤x≤1∧0≤f(x)≤(1/2)  ⇒    f(x)=(√(x−x^2 )); 0≤x<(1/2)  f^(−1) (x)=(1/2)−((√(1−4x^2 ))/2); 0≤x≤(1/2)    f(x)=(√(x−x^2 )); (1/2)≤x≤1  f^(−1) (x)=(1/2)+((√(1−4x^2 ))/2); 0≤x≤(1/2)

$${f}\left({x}\right)=\sqrt{{x}−{x}^{\mathrm{2}} } \\ $$$$\mathrm{0}\leqslant{x}\leqslant\mathrm{1}\wedge\mathrm{0}\leqslant{f}\left({x}\right)\leqslant\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\Rightarrow \\ $$$$ \\ $$$${f}\left({x}\right)=\sqrt{{x}−{x}^{\mathrm{2}} };\:\mathrm{0}\leqslant{x}<\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${f}^{−\mathrm{1}} \left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}−\frac{\sqrt{\mathrm{1}−\mathrm{4}{x}^{\mathrm{2}} }}{\mathrm{2}};\:\mathrm{0}\leqslant{x}\leqslant\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$$${f}\left({x}\right)=\sqrt{{x}−{x}^{\mathrm{2}} };\:\frac{\mathrm{1}}{\mathrm{2}}\leqslant{x}\leqslant\mathrm{1} \\ $$$${f}^{−\mathrm{1}} \left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}+\frac{\sqrt{\mathrm{1}−\mathrm{4}{x}^{\mathrm{2}} }}{\mathrm{2}};\:\mathrm{0}\leqslant{x}\leqslant\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com