Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 113854 by ayenisamuel last updated on 15/Sep/20

if f(x)=2x^2 −12x+10.   (i) sketch the graph of y=∣f(x)∣ for  −1≤x≤7.  (ii) find the set of values of k for  which the equation ∣f(x)∣=k has 4  distinct roots.

$${if}\:{f}\left({x}\right)=\mathrm{2}{x}^{\mathrm{2}} −\mathrm{12}{x}+\mathrm{10}.\: \\ $$$$\left({i}\right)\:{sketch}\:{the}\:{graph}\:{of}\:{y}=\mid{f}\left({x}\right)\mid\:{for} \\ $$$$−\mathrm{1}\leqslant{x}\leqslant\mathrm{7}. \\ $$$$\left({ii}\right)\:{find}\:{the}\:{set}\:{of}\:{values}\:{of}\:{k}\:{for} \\ $$$${which}\:{the}\:{equation}\:\mid{f}\left({x}\right)\mid={k}\:{has}\:\mathrm{4} \\ $$$${distinct}\:{roots}. \\ $$

Answered by MJS_new last updated on 15/Sep/20

∣2x^2 −12x+10∣=k ⇒ k≥0  (2x^2 −12x+10)^2 =k^2   x^4 −12x^3 +46x^2 −60x−(k^2 /4)+25=0  let x=t+3  t^4 −8t^2 −(k^2 /4)+16=0  ⇒ t^2 =((8±k)/2) ⇒ t=±(√((8±k)/2))   [4 solutions]  ⇒ x_(1, 2) =3±(√((8−k)/2)); x_(3, 4) =3±(√((8+k)/2))  ⇒ 4 solutions only if 8−k>0∧8+k>0  ⇒ −8<k<8 but k≥0  ⇒ 0≤k<8

$$\mid\mathrm{2}{x}^{\mathrm{2}} −\mathrm{12}{x}+\mathrm{10}\mid={k}\:\Rightarrow\:{k}\geqslant\mathrm{0} \\ $$$$\left(\mathrm{2}{x}^{\mathrm{2}} −\mathrm{12}{x}+\mathrm{10}\right)^{\mathrm{2}} ={k}^{\mathrm{2}} \\ $$$${x}^{\mathrm{4}} −\mathrm{12}{x}^{\mathrm{3}} +\mathrm{46}{x}^{\mathrm{2}} −\mathrm{60}{x}−\frac{{k}^{\mathrm{2}} }{\mathrm{4}}+\mathrm{25}=\mathrm{0} \\ $$$$\mathrm{let}\:{x}={t}+\mathrm{3} \\ $$$${t}^{\mathrm{4}} −\mathrm{8}{t}^{\mathrm{2}} −\frac{{k}^{\mathrm{2}} }{\mathrm{4}}+\mathrm{16}=\mathrm{0} \\ $$$$\Rightarrow\:{t}^{\mathrm{2}} =\frac{\mathrm{8}\pm{k}}{\mathrm{2}}\:\Rightarrow\:{t}=\pm\sqrt{\frac{\mathrm{8}\pm{k}}{\mathrm{2}}}\:\:\:\left[\mathrm{4}\:\mathrm{solutions}\right] \\ $$$$\Rightarrow\:{x}_{\mathrm{1},\:\mathrm{2}} =\mathrm{3}\pm\sqrt{\frac{\mathrm{8}−{k}}{\mathrm{2}}};\:{x}_{\mathrm{3},\:\mathrm{4}} =\mathrm{3}\pm\sqrt{\frac{\mathrm{8}+{k}}{\mathrm{2}}} \\ $$$$\Rightarrow\:\mathrm{4}\:\mathrm{solutions}\:\mathrm{only}\:\mathrm{if}\:\mathrm{8}−{k}>\mathrm{0}\wedge\mathrm{8}+{k}>\mathrm{0} \\ $$$$\Rightarrow\:−\mathrm{8}<{k}<\mathrm{8}\:\mathrm{but}\:{k}\geqslant\mathrm{0} \\ $$$$\Rightarrow\:\mathrm{0}\leqslant{k}<\mathrm{8} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com