Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 201464 by hardmath last updated on 06/Dec/23

if   f(2) = 3   and   f(4) = 5  find   ∫_2 ^( 4)  f(x) ∙ f^′ (x) dx = ?

$$\mathrm{if}\:\:\:\mathrm{f}\left(\mathrm{2}\right)\:=\:\mathrm{3}\:\:\:\mathrm{and}\:\:\:\mathrm{f}\left(\mathrm{4}\right)\:=\:\mathrm{5} \\ $$$$\mathrm{find}\:\:\:\int_{\mathrm{2}} ^{\:\mathrm{4}} \:\mathrm{f}\left(\mathrm{x}\right)\:\centerdot\:\mathrm{f}\:^{'} \left(\mathrm{x}\right)\:\mathrm{dx}\:=\:? \\ $$

Answered by mahdipoor last updated on 06/Dec/23

=[(((f(x))^2 )/2)]_2 ^4 =((25−9)/2)=8

$$=\left[\frac{\left({f}\left({x}\right)\right)^{\mathrm{2}} }{\mathrm{2}}\right]_{\mathrm{2}} ^{\mathrm{4}} =\frac{\mathrm{25}−\mathrm{9}}{\mathrm{2}}=\mathrm{8} \\ $$

Commented by hardmath last updated on 06/Dec/23

thank you, but I didn′t understand

$$\mathrm{thank}\:\mathrm{you},\:\mathrm{but}\:\mathrm{I}\:\mathrm{didn}'\mathrm{t}\:\mathrm{understand} \\ $$

Answered by mr W last updated on 07/Dec/23

let u=f(x)  du=f′(x)dx  at x=2: u=f(2)=3  at x=4: u=f4)=5  ∫_2 ^4 f(x)f′(x)dx  =∫_(f(2)) ^(f(4)) udu  =[(u^2 /2)]_(f(2)) ^(f(4))   =[(u^2 /2)]_3 ^5   =((5^2 −3^2 )/2)  =8

$${let}\:{u}={f}\left({x}\right) \\ $$$${du}={f}'\left({x}\right){dx} \\ $$$${at}\:{x}=\mathrm{2}:\:{u}={f}\left(\mathrm{2}\right)=\mathrm{3} \\ $$$$\left.{at}\:{x}=\mathrm{4}:\:{u}={f}\mathrm{4}\right)=\mathrm{5} \\ $$$$\int_{\mathrm{2}} ^{\mathrm{4}} {f}\left({x}\right){f}'\left({x}\right){dx} \\ $$$$=\int_{{f}\left(\mathrm{2}\right)} ^{{f}\left(\mathrm{4}\right)} {udu} \\ $$$$=\left[\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\right]_{{f}\left(\mathrm{2}\right)} ^{{f}\left(\mathrm{4}\right)} \\ $$$$=\left[\frac{{u}^{\mathrm{2}} }{\mathrm{2}}\right]_{\mathrm{3}} ^{\mathrm{5}} \\ $$$$=\frac{\mathrm{5}^{\mathrm{2}} −\mathrm{3}^{\mathrm{2}} }{\mathrm{2}} \\ $$$$=\mathrm{8} \\ $$

Commented by Calculusboy last updated on 06/Dec/23

nice solution

$$\boldsymbol{{nice}}\:\boldsymbol{{solution}} \\ $$

Commented by hardmath last updated on 08/Dec/23

cool dear professor thank you

$$\mathrm{cool}\:\mathrm{dear}\:\mathrm{professor}\:\mathrm{thank}\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com