| 
 | ||
| Question Number 63399 by smartsmith459@gmail.com last updated on 03/Jul/19 | ||
|  | ||
| $${if}\:\alpha\:{and}\:\beta\:{are}\:{the}\:{roots}\:{of}\:\mathrm{4}{x}^{\mathrm{2}\:} −\mathrm{6}{x}+\mathrm{1}===\mathrm{00}====================== \\ $$$$=\mathrm{0}.\:{find}\:\alpha^{\mathrm{3}} −\beta^{\mathrm{3}} . \\ $$ | ||
| Commented by mr W last updated on 03/Jul/19 | ||
| ![α+β=(6/4)=(3/2)  αβ=(1/4)    (α−β)^2 =(α+β)^2 −4αβ  ⇒(α−β)=±(√((α+β)^2 −4αβ))    α^3 −β^3   =(α−β)(α^2 +β^2 +αβ)  =(α−β)[(α+β)^2 −αβ]  =±(√((α+β)^2 −4αβ))[(α+β)^2 −αβ]  =±(√((9/4)−1))[(9/4)−(1/4)]  =±2(√(5/4))  =±(√5)](Q63413.png) | ||
| $$\alpha+\beta=\frac{\mathrm{6}}{\mathrm{4}}=\frac{\mathrm{3}}{\mathrm{2}} \\ $$$$\alpha\beta=\frac{\mathrm{1}}{\mathrm{4}} \\ $$$$ \\ $$$$\left(\alpha−\beta\right)^{\mathrm{2}} =\left(\alpha+\beta\right)^{\mathrm{2}} −\mathrm{4}\alpha\beta \\ $$$$\Rightarrow\left(\alpha−\beta\right)=\pm\sqrt{\left(\alpha+\beta\right)^{\mathrm{2}} −\mathrm{4}\alpha\beta} \\ $$$$ \\ $$$$\alpha^{\mathrm{3}} −\beta^{\mathrm{3}} \\ $$$$=\left(\alpha−\beta\right)\left(\alpha^{\mathrm{2}} +\beta^{\mathrm{2}} +\alpha\beta\right) \\ $$$$=\left(\alpha−\beta\right)\left[\left(\alpha+\beta\right)^{\mathrm{2}} −\alpha\beta\right] \\ $$$$=\pm\sqrt{\left(\alpha+\beta\right)^{\mathrm{2}} −\mathrm{4}\alpha\beta}\left[\left(\alpha+\beta\right)^{\mathrm{2}} −\alpha\beta\right] \\ $$$$=\pm\sqrt{\frac{\mathrm{9}}{\mathrm{4}}−\mathrm{1}}\left[\frac{\mathrm{9}}{\mathrm{4}}−\frac{\mathrm{1}}{\mathrm{4}}\right] \\ $$$$=\pm\mathrm{2}\sqrt{\frac{\mathrm{5}}{\mathrm{4}}} \\ $$$$=\pm\sqrt{\mathrm{5}} \\ $$ | ||
| Answered by MJS last updated on 03/Jul/19 | ||
|  | ||
| $$\mathrm{4}{x}^{\mathrm{2}} −\mathrm{6}{x}+\mathrm{1}=\mathrm{0}\:\Rightarrow\:{x}=\frac{\mathrm{3}}{\mathrm{4}}\pm\frac{\sqrt{\mathrm{5}}}{\mathrm{4}} \\ $$$$\mathrm{if}\:\alpha<\beta\:\Rightarrow\:\alpha=\frac{\mathrm{3}}{\mathrm{4}}−\frac{\sqrt{\mathrm{5}}}{\mathrm{4}}\wedge\beta=\frac{\mathrm{3}}{\mathrm{4}}+\frac{\sqrt{\mathrm{5}}}{\mathrm{4}} \\ $$$$\Rightarrow\:\alpha^{\mathrm{3}} −\beta^{\mathrm{3}} =−\sqrt{\mathrm{5}} \\ $$ | ||