Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 192009 by universe last updated on 05/May/23

     if  a>1 , show       ((Σ_(k=1) ^(a^2 −1)   (√(a+(√k))))/(Σ_(k=1) ^(a^2 −1)   (√(a−(√k)))))   =   (√2)  +  1

$$\:\:\:\:\:{if}\:\:{a}>\mathrm{1}\:,\:{show} \\ $$$$\:\:\:\:\:\frac{\underset{{k}=\mathrm{1}} {\overset{{a}^{\mathrm{2}} −\mathrm{1}} {\sum}}\:\:\sqrt{{a}+\sqrt{{k}}}}{\underset{{k}=\mathrm{1}} {\overset{{a}^{\mathrm{2}} −\mathrm{1}} {\sum}}\:\:\sqrt{{a}−\sqrt{{k}}}}\:\:\:=\:\:\:\sqrt{\mathrm{2}}\:\:+\:\:\mathrm{1} \\ $$

Answered by Skabetix last updated on 05/May/23

Commented by Skabetix last updated on 05/May/23

S_2 =S_1 ((√)2−1)  →S_1 =(S_2 /( (√2)−1))  →(S_1 /S_2 )=((S_2 /( (√2)−1))/(S_2 /1))=(S_2 /( (√2)−1))×(1/S_2 )=(1/( (√2)−1))=(((√2)+1)/(((√)2−1)((√)2+1)))=(√)2+1

$${S}_{\mathrm{2}} ={S}_{\mathrm{1}} \left(\sqrt{}\mathrm{2}−\mathrm{1}\right) \\ $$$$\rightarrow{S}_{\mathrm{1}} =\frac{{S}_{\mathrm{2}} }{\:\sqrt{\mathrm{2}}−\mathrm{1}} \\ $$$$\rightarrow\frac{{S}_{\mathrm{1}} }{{S}_{\mathrm{2}} }=\frac{\frac{{S}_{\mathrm{2}} }{\:\sqrt{\mathrm{2}}−\mathrm{1}}}{\frac{{S}_{\mathrm{2}} }{\mathrm{1}}}=\frac{\boldsymbol{{S}}_{\mathrm{2}} }{\:\sqrt{\mathrm{2}}−\mathrm{1}}×\frac{\mathrm{1}}{\boldsymbol{{S}}_{\mathrm{2}} }=\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}−\mathrm{1}}=\frac{\sqrt{\mathrm{2}}+\mathrm{1}}{\left(\sqrt{}\mathrm{2}−\mathrm{1}\right)\left(\sqrt{}\mathrm{2}+\mathrm{1}\right)}=\sqrt{}\mathrm{2}+\mathrm{1} \\ $$

Answered by York12 last updated on 24/Jul/23

let Σ_(k=1 ) ^(a^2 −1) (√(a+(√k) ))=s_1   and Σ_(k=1) ^(a^2 −1) (√(a−(√k)))=s_2   s_1 −s_2 =Σ_(k=1) ^(a^2 −1) [(√(((√(a+(√k)))−(√(a−(√k))))^2 ))]=Σ_(k=1) ^(a^2 −1) (√2)(√(a−(√(a^2 −k))))     → [I]  Now since Σ_(k=1) ^(a^2 −1) T_k =Σ_(k=1) ^(a^2 −1) T_([(a^2 −1)−(k−1)]) =Σ_(k=1) ^(a^2 −1) T_((a^2 −k))   let T_k =(√(a−(√k) )) → T_((a^2 −k)) =(√(a−(√(a^2 −k))))  ∴ I = Σ_(k=1) ^(a^2 −1) (√(a−(√k)))=(√2)s_2   ∴ s_1 +s_2 =(√2)s_2  → s_1 =(1+(√2))s_2  → (s_1 /s_2 )=(1+(√2)) → (That′s it )

$${let}\:\underset{{k}=\mathrm{1}\:} {\overset{{a}^{\mathrm{2}} −\mathrm{1}} {\sum}}\sqrt{{a}+\sqrt{{k}}\:}={s}_{\mathrm{1}} \:\:{and}\:\underset{{k}=\mathrm{1}} {\overset{{a}^{\mathrm{2}} −\mathrm{1}} {\sum}}\sqrt{{a}−\sqrt{{k}}}={s}_{\mathrm{2}} \\ $$$${s}_{\mathrm{1}} −{s}_{\mathrm{2}} =\underset{{k}=\mathrm{1}} {\overset{{a}^{\mathrm{2}} −\mathrm{1}} {\sum}}\left[\sqrt{\left(\sqrt{{a}+\sqrt{{k}}}−\sqrt{{a}−\sqrt{{k}}}\right)^{\mathrm{2}} }\right]=\underset{{k}=\mathrm{1}} {\overset{{a}^{\mathrm{2}} −\mathrm{1}} {\sum}}\sqrt{\mathrm{2}}\sqrt{{a}−\sqrt{{a}^{\mathrm{2}} −{k}}}\:\:\:\:\:\rightarrow\:\left[\boldsymbol{{I}}\right] \\ $$$${Now}\:{since}\:\underset{{k}=\mathrm{1}} {\overset{{a}^{\mathrm{2}} −\mathrm{1}} {\sum}}{T}_{{k}} =\underset{{k}=\mathrm{1}} {\overset{{a}^{\mathrm{2}} −\mathrm{1}} {\sum}}{T}_{\left[\left({a}^{\mathrm{2}} −\mathrm{1}\right)−\left({k}−\mathrm{1}\right)\right]} =\underset{{k}=\mathrm{1}} {\overset{{a}^{\mathrm{2}} −\mathrm{1}} {\sum}}{T}_{\left({a}^{\mathrm{2}} −{k}\right)} \\ $$$${let}\:{T}_{{k}} =\sqrt{{a}−\sqrt{{k}}\:}\:\rightarrow\:{T}_{\left({a}^{\mathrm{2}} −{k}\right)} =\sqrt{{a}−\sqrt{{a}^{\mathrm{2}} −{k}}} \\ $$$$\therefore\:\boldsymbol{{I}}\:=\:\underset{{k}=\mathrm{1}} {\overset{{a}^{\mathrm{2}} −\mathrm{1}} {\sum}}\sqrt{{a}−\sqrt{{k}}}=\sqrt{\mathrm{2}}{s}_{\mathrm{2}} \\ $$$$\therefore\:{s}_{\mathrm{1}} +{s}_{\mathrm{2}} =\sqrt{\mathrm{2}}{s}_{\mathrm{2}} \:\rightarrow\:{s}_{\mathrm{1}} =\left(\mathrm{1}+\sqrt{\mathrm{2}}\right){s}_{\mathrm{2}} \:\rightarrow\:\frac{{s}_{\mathrm{1}} }{{s}_{\mathrm{2}} }=\left(\mathrm{1}+\sqrt{\mathrm{2}}\right)\:\rightarrow\:\left({That}'{s}\:{it}\:\right)\:\: \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\: \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com