Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 217140 by peter frank last updated on 02/Mar/25

if a, b, c are three digits, abc and bca are two numbers. where abc +cba = 444, b =2. find the value of a+b+c.

if a, b, c are three digits, abc and bca are two numbers. where abc +cba = 444, b =2. find the value of a+b+c.

Answered by Rasheed.Sindhi last updated on 02/Mar/25

abc^(−) +cba^(−) =444  a2c^(−) +c2a^(−) =444  (100a+20+c)+(100c+20+a)=444  101a+101c=404  a+c=4  a+b+c=4+2=6

$$\overline {{abc}}+\overline {{cba}}=\mathrm{444} \\ $$$$\overline {{a}\mathrm{2}{c}}+\overline {{c}\mathrm{2}{a}}=\mathrm{444} \\ $$$$\left(\mathrm{100}{a}+\mathrm{20}+{c}\right)+\left(\mathrm{100}{c}+\mathrm{20}+{a}\right)=\mathrm{444} \\ $$$$\mathrm{101}{a}+\mathrm{101}{c}=\mathrm{404} \\ $$$${a}+{c}=\mathrm{4} \\ $$$${a}+{b}+{c}=\mathrm{4}+\mathrm{2}=\mathrm{6} \\ $$

Commented by peter frank last updated on 02/Mar/25

thank  you

$$\mathrm{thank}\:\:\mathrm{you} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com