Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 113983 by mohammad17 last updated on 16/Sep/20

if Z_1 =1−i and Z_2 =i^4  by using demover find (Z_1 /Z_2 ) ?

$${if}\:{Z}_{\mathrm{1}} =\mathrm{1}−{i}\:{and}\:{Z}_{\mathrm{2}} ={i}^{\mathrm{4}} \:{by}\:{using}\:{demover}\:{find}\:\frac{{Z}_{\mathrm{1}} }{{Z}_{\mathrm{2}} }\:? \\ $$

Answered by Dwaipayan Shikari last updated on 16/Sep/20

(Z_1 /Z_2 )=((1−i)/i^4 )=1−i

$$\frac{{Z}_{\mathrm{1}} }{{Z}_{\mathrm{2}} }=\frac{\mathrm{1}−{i}}{{i}^{\mathrm{4}} }=\mathrm{1}−{i} \\ $$

Commented by mohammad17 last updated on 16/Sep/20

sir i want this by demover theorem

$${sir}\:{i}\:{want}\:{this}\:{by}\:{demover}\:{theorem}\: \\ $$

Answered by Dwaipayan Shikari last updated on 16/Sep/20

Z_1 =(√2)((1/( (√2)))−(1/( (√2)))i)=(√2)(cos(π/4)−isin(π/4))  Z_1 =i^4 =(cos(π/2)+isin(π/2))^4 =cos(4.(π/2))+isin(4.(π/2))=1  (Z_1 /Z_2 )=(((√2)(cos(π/4)−isin(π/4)))/1)=(√2)(cos(π/4)−isin(π/4))=1−i

$${Z}_{\mathrm{1}} =\sqrt{\mathrm{2}}\left(\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}−\frac{\mathrm{1}}{\:\sqrt{\mathrm{2}}}{i}\right)=\sqrt{\mathrm{2}}\left({cos}\frac{\pi}{\mathrm{4}}−{isin}\frac{\pi}{\mathrm{4}}\right) \\ $$$${Z}_{\mathrm{1}} ={i}^{\mathrm{4}} =\left({cos}\frac{\pi}{\mathrm{2}}+{isin}\frac{\pi}{\mathrm{2}}\right)^{\mathrm{4}} ={cos}\left(\mathrm{4}.\frac{\pi}{\mathrm{2}}\right)+{isin}\left(\mathrm{4}.\frac{\pi}{\mathrm{2}}\right)=\mathrm{1} \\ $$$$\frac{{Z}_{\mathrm{1}} }{{Z}_{\mathrm{2}} }=\frac{\sqrt{\mathrm{2}}\left({cos}\frac{\pi}{\mathrm{4}}−{isin}\frac{\pi}{\mathrm{4}}\right)}{\mathrm{1}}=\sqrt{\mathrm{2}}\left({cos}\frac{\pi}{\mathrm{4}}−{isin}\frac{\pi}{\mathrm{4}}\right)=\mathrm{1}−{i} \\ $$

Commented by mohammad17 last updated on 16/Sep/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com