Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 53391 by Kunal12588 last updated on 21/Jan/19

if A+B+C=2S, prove that   4 sin S sin(S−A)sin(S−B)sin(S−C)  =1−cos^2  A−cos^2  B−cos^2  C+2 cos A cos B cos C

$${if}\:{A}+{B}+{C}=\mathrm{2}{S},\:{prove}\:{that}\: \\ $$$$\mathrm{4}\:\mathrm{sin}\:{S}\:\mathrm{sin}\left({S}−{A}\right)\mathrm{sin}\left({S}−{B}\right)\mathrm{sin}\left({S}−{C}\right) \\ $$$$=\mathrm{1}−\mathrm{cos}^{\mathrm{2}} \:{A}−\mathrm{cos}^{\mathrm{2}} \:{B}−\mathrm{cos}^{\mathrm{2}} \:{C}+\mathrm{2}\:\mathrm{cos}\:{A}\:\mathrm{cos}\:{B}\:\mathrm{cos}\:{C}\: \\ $$

Commented by Kunal12588 last updated on 21/Jan/19

4s_s s_(s−a) s_(s−b) s_(s−c)   =[2s_s s_(s−a) ][2s_(s−b) s_(s−c) ]  =(c_(s−s+a) −c_(s+s−a) )(c_(s−b−s+c) −c_(s−b+s−c) )  =(c_a −c_(2s−a) )(c_(b−c) −c_(s−b−c) )  =(c_a −c_(a+b+c−a) )(c_(b−c) −c_(a+b+c−b−c) )  =(c_a −c_(b+c) )(c_(b−c) −c_a )  =−c_a ^2 −c_(b+c) c_(b−c) +c_a c_(b−c) +c_a c_(b+c)   =−c_a ^2 −(1/2)(c_(b+c+b−c) −c_(b+c−b+c) )+c_a (c_(b−c) +c_(b+c) )  =−c_a ^2 −(1/2)(c_(2b) −c_(2c) )+c_a (2c_((b−c+b+c)/2) c_((b+c−b+c)/2) )  =−c_a ^2 −(1/2)(2c_b ^2 −2c_c ^2 +2)+2c_a c_b c_c   =1−c_a ^2 −c_b ^2 −c_c ^2 +2c_a c_b c_c

$$\mathrm{4}{s}_{{s}} {s}_{{s}−{a}} {s}_{{s}−{b}} {s}_{{s}−{c}} \\ $$$$=\left[\mathrm{2}{s}_{{s}} {s}_{{s}−{a}} \right]\left[\mathrm{2}{s}_{{s}−{b}} {s}_{{s}−{c}} \right] \\ $$$$=\left({c}_{{s}−{s}+{a}} −{c}_{{s}+{s}−{a}} \right)\left({c}_{{s}−{b}−{s}+{c}} −{c}_{{s}−{b}+{s}−{c}} \right) \\ $$$$=\left({c}_{{a}} −{c}_{\mathrm{2}{s}−{a}} \right)\left({c}_{{b}−{c}} −{c}_{{s}−{b}−{c}} \right) \\ $$$$=\left({c}_{{a}} −{c}_{{a}+{b}+{c}−{a}} \right)\left({c}_{{b}−{c}} −{c}_{{a}+{b}+{c}−{b}−{c}} \right) \\ $$$$=\left({c}_{{a}} −{c}_{{b}+{c}} \right)\left({c}_{{b}−{c}} −{c}_{{a}} \right) \\ $$$$=−{c}_{{a}} ^{\mathrm{2}} −{c}_{{b}+{c}} {c}_{{b}−{c}} +{c}_{{a}} {c}_{{b}−{c}} +{c}_{{a}} {c}_{{b}+{c}} \\ $$$$=−{c}_{{a}} ^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}\left({c}_{{b}+{c}+{b}−{c}} −{c}_{{b}+{c}−{b}+{c}} \right)+{c}_{{a}} \left({c}_{{b}−{c}} +{c}_{{b}+{c}} \right) \\ $$$$=−{c}_{{a}} ^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}\left({c}_{\mathrm{2}{b}} −{c}_{\mathrm{2}{c}} \right)+{c}_{{a}} \left(\mathrm{2}{c}_{\left({b}−{c}+{b}+{c}\right)/\mathrm{2}} {c}_{\left({b}+{c}−{b}+{c}\right)/\mathrm{2}} \right) \\ $$$$=−{c}_{{a}} ^{\mathrm{2}} −\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{2}{c}_{{b}} ^{\mathrm{2}} −\mathrm{2}{c}_{{c}} ^{\mathrm{2}} +\mathrm{2}\right)+\mathrm{2}{c}_{{a}} {c}_{{b}} {c}_{{c}} \\ $$$$=\mathrm{1}−{c}_{{a}} ^{\mathrm{2}} −{c}_{{b}} ^{\mathrm{2}} −{c}_{{c}} ^{\mathrm{2}} +\mathrm{2}{c}_{{a}} {c}_{{b}} {c}_{{c}} \\ $$

Answered by math1967 last updated on 21/Jan/19

[cosA−cos(B+C)][cos(B−C)−cos A]  cos A{cos (B−C)+cos (B+C)}−cos^2 A−cos^2 B−cos^2 C+1★  1−cos^2 A−cos^2 B−cos^2 C+2cos Acos Bcos C  [cos (B−C)cos (B+C)=cos^2 B+cos^2 C−1]★

$$\left[{cosA}−{cos}\left({B}+{C}\right)\right]\left[{cos}\left({B}−{C}\right)−\mathrm{cos}\:{A}\right] \\ $$$$\mathrm{cos}\:{A}\left\{\mathrm{cos}\:\left({B}−{C}\right)+\mathrm{cos}\:\left({B}+{C}\right)\right\}−\mathrm{cos}\:^{\mathrm{2}} {A}−\mathrm{cos}\:^{\mathrm{2}} {B}−\mathrm{cos}\:^{\mathrm{2}} {C}+\mathrm{1}\bigstar \\ $$$$\mathrm{1}−\mathrm{cos}\:^{\mathrm{2}} {A}−\mathrm{cos}\:^{\mathrm{2}} {B}−\mathrm{cos}\:^{\mathrm{2}} {C}+\mathrm{2cos}\:{A}\mathrm{cos}\:{B}\mathrm{cos}\:{C} \\ $$$$\left[\mathrm{cos}\:\left({B}−{C}\right)\mathrm{cos}\:\left({B}+{C}\right)=\mathrm{cos}\:^{\mathrm{2}} {B}+\mathrm{cos}\:^{\mathrm{2}} {C}−\mathrm{1}\right]\bigstar \\ $$

Commented by math1967 last updated on 21/Jan/19

welcome

$${welcome} \\ $$

Commented by Kunal12588 last updated on 21/Jan/19

thanks a lot sir i got my mistake

$${thanks}\:{a}\:{lot}\:{sir}\:{i}\:{got}\:{my}\:{mistake} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com