Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 147882 by mathdanisur last updated on 24/Jul/21

if   ((6(√3) + 10))^(1/3)  − ((6(√3) − 10))^(1/3)  = x  find   (x^3 /(10−3x)) = ?

$${if}\:\:\:\sqrt[{\mathrm{3}}]{\mathrm{6}\sqrt{\mathrm{3}}\:+\:\mathrm{10}}\:−\:\sqrt[{\mathrm{3}}]{\mathrm{6}\sqrt{\mathrm{3}}\:−\:\mathrm{10}}\:=\:\boldsymbol{{x}} \\ $$$${find}\:\:\:\frac{{x}^{\mathrm{3}} }{\mathrm{10}−\mathrm{3}{x}}\:=\:? \\ $$

Answered by mr W last updated on 24/Jul/21

a=((6(√3) + 10))^(1/3)  ,b= ((6(√3) − 10))^(1/3)   a^3 −b^3 =20  ab=((36×3−100))^(1/3) =2  (a−b)^3 =a^3 −b^3 −3ab(a−b)  (a−b)^3 =20−6(a−b)  x^3 +6x−20=0  x^3 −2x^2 +2x^2 −4x+10x−20=0  (x−2)(x^2 +x+10)=0  ⇒x=2 is the only real root,  ⇒((6(√3) + 10))^(1/3)  − ((6(√3) − 10))^(1/3)  = x=2

$${a}=\sqrt[{\mathrm{3}}]{\mathrm{6}\sqrt{\mathrm{3}}\:+\:\mathrm{10}}\:,{b}=\:\sqrt[{\mathrm{3}}]{\mathrm{6}\sqrt{\mathrm{3}}\:−\:\mathrm{10}} \\ $$$${a}^{\mathrm{3}} −{b}^{\mathrm{3}} =\mathrm{20} \\ $$$${ab}=\sqrt[{\mathrm{3}}]{\mathrm{36}×\mathrm{3}−\mathrm{100}}=\mathrm{2} \\ $$$$\left({a}−{b}\right)^{\mathrm{3}} ={a}^{\mathrm{3}} −{b}^{\mathrm{3}} −\mathrm{3}{ab}\left({a}−{b}\right) \\ $$$$\left({a}−{b}\right)^{\mathrm{3}} =\mathrm{20}−\mathrm{6}\left({a}−{b}\right) \\ $$$${x}^{\mathrm{3}} +\mathrm{6}{x}−\mathrm{20}=\mathrm{0} \\ $$$${x}^{\mathrm{3}} −\mathrm{2}{x}^{\mathrm{2}} +\mathrm{2}{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{10}{x}−\mathrm{20}=\mathrm{0} \\ $$$$\left({x}−\mathrm{2}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{10}\right)=\mathrm{0} \\ $$$$\Rightarrow{x}=\mathrm{2}\:{is}\:{the}\:{only}\:{real}\:{root}, \\ $$$$\Rightarrow\sqrt[{\mathrm{3}}]{\mathrm{6}\sqrt{\mathrm{3}}\:+\:\mathrm{10}}\:−\:\sqrt[{\mathrm{3}}]{\mathrm{6}\sqrt{\mathrm{3}}\:−\:\mathrm{10}}\:=\:\boldsymbol{{x}}=\mathrm{2} \\ $$

Commented by mathdanisur last updated on 24/Jul/21

Thankyou Sir

$${Thankyou}\:{Sir} \\ $$

Answered by behi834171 last updated on 24/Jul/21

 { ((ab=2)),((a−b=x        [a=(6(√3)+10)^(1/3) ,b=(6(√3)−10)^(1/3) ])),((a^3 −b^3 =20)) :}  ⇒(a−b)[(a−b)^2 +3ab]=20  ⇒x(x^2 +6)=20⇒x^3 +6x−20=0  ⇒(x−2)(x^2 +2x+10)=0⇒x=2  ⇒(x^3 /(10−3x))=(8/(10−6))=2        .■

$$\begin{cases}{{ab}=\mathrm{2}}\\{{a}−{b}={x}\:\:\:\:\:\:\:\:\left[{a}=\left(\mathrm{6}\sqrt{\mathrm{3}}+\mathrm{10}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} ,{b}=\left(\mathrm{6}\sqrt{\mathrm{3}}−\mathrm{10}\right)^{\frac{\mathrm{1}}{\mathrm{3}}} \right]}\\{{a}^{\mathrm{3}} −{b}^{\mathrm{3}} =\mathrm{20}}\end{cases} \\ $$$$\Rightarrow\left({a}−{b}\right)\left[\left({a}−{b}\right)^{\mathrm{2}} +\mathrm{3}{ab}\right]=\mathrm{20} \\ $$$$\Rightarrow{x}\left({x}^{\mathrm{2}} +\mathrm{6}\right)=\mathrm{20}\Rightarrow{x}^{\mathrm{3}} +\mathrm{6}{x}−\mathrm{20}=\mathrm{0} \\ $$$$\Rightarrow\left({x}−\mathrm{2}\right)\left({x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{10}\right)=\mathrm{0}\Rightarrow{x}=\mathrm{2} \\ $$$$\Rightarrow\frac{{x}^{\mathrm{3}} }{\mathrm{10}−\mathrm{3}{x}}=\frac{\mathrm{8}}{\mathrm{10}−\mathrm{6}}=\mathrm{2}\:\:\:\:\:\:\:\:.\blacksquare \\ $$

Commented by mathdanisur last updated on 24/Jul/21

Thankyou Sir

$${Thankyou}\:{Sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com