Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 153420 by alcohol last updated on 07/Sep/21

how many x ∈R satisfy x^(99) −99x+1=0

$${how}\:{many}\:{x}\:\in\mathbb{R}\:{satisfy}\:{x}^{\mathrm{99}} −\mathrm{99}{x}+\mathrm{1}=\mathrm{0} \\ $$

Answered by mr W last updated on 07/Sep/21

f′(x)=99x^(98) −99=0  x=±1  f(−1)=−1+99+1=99  f(1)=1−99+1=−97  f(−∞)→−∞  f(+∞)→+∞  ⇒three real roots!

$${f}'\left({x}\right)=\mathrm{99}{x}^{\mathrm{98}} −\mathrm{99}=\mathrm{0} \\ $$$${x}=\pm\mathrm{1} \\ $$$${f}\left(−\mathrm{1}\right)=−\mathrm{1}+\mathrm{99}+\mathrm{1}=\mathrm{99} \\ $$$${f}\left(\mathrm{1}\right)=\mathrm{1}−\mathrm{99}+\mathrm{1}=−\mathrm{97} \\ $$$${f}\left(−\infty\right)\rightarrow−\infty \\ $$$${f}\left(+\infty\right)\rightarrow+\infty \\ $$$$\Rightarrow{three}\:{real}\:{roots}! \\ $$

Commented by mr W last updated on 07/Sep/21

Terms of Service

Privacy Policy

Contact: info@tinkutara.com