Question and Answers Forum

All Questions      Topic List

Number Theory Questions

Previous in All Question      Next in All Question      

Previous in Number Theory      Next in Number Theory      

Question Number 46760 by arcana last updated on 31/Oct/18

how many natural solutions exist  to  x+y+z=11, x,y,z∈N

$${how}\:{many}\:{natural}\:{solutions}\:{exist} \\ $$$${to} \\ $$$${x}+{y}+{z}=\mathrm{11},\:{x},{y},{z}\in\mathbb{N} \\ $$

Commented by MrW3 last updated on 31/Oct/18

no. of ways to put 11 objects into 3 containers:  C_2 ^(10) =45

$${no}.\:{of}\:{ways}\:{to}\:{put}\:\mathrm{11}\:{objects}\:{into}\:\mathrm{3}\:{containers}: \\ $$$${C}_{\mathrm{2}} ^{\mathrm{10}} =\mathrm{45} \\ $$

Answered by Kunal12588 last updated on 31/Oct/18

lets try  1+1+9      (1)  1+2+8      (2)  1+3+7      (3)  1+4+6      (4)  1+5+5      (5)  2+2+7      (6)  2+3+6      (7)  2+4+5      (8)  3+3+5      (9)  3+4+4      (10)  4+5+2=2+4+5 counted before  total=10

$${lets}\:{try} \\ $$$$\mathrm{1}+\mathrm{1}+\mathrm{9}\:\:\:\:\:\:\left(\mathrm{1}\right) \\ $$$$\mathrm{1}+\mathrm{2}+\mathrm{8}\:\:\:\:\:\:\left(\mathrm{2}\right) \\ $$$$\mathrm{1}+\mathrm{3}+\mathrm{7}\:\:\:\:\:\:\left(\mathrm{3}\right) \\ $$$$\mathrm{1}+\mathrm{4}+\mathrm{6}\:\:\:\:\:\:\left(\mathrm{4}\right) \\ $$$$\mathrm{1}+\mathrm{5}+\mathrm{5}\:\:\:\:\:\:\left(\mathrm{5}\right) \\ $$$$\mathrm{2}+\mathrm{2}+\mathrm{7}\:\:\:\:\:\:\left(\mathrm{6}\right) \\ $$$$\mathrm{2}+\mathrm{3}+\mathrm{6}\:\:\:\:\:\:\left(\mathrm{7}\right) \\ $$$$\mathrm{2}+\mathrm{4}+\mathrm{5}\:\:\:\:\:\:\left(\mathrm{8}\right) \\ $$$$\mathrm{3}+\mathrm{3}+\mathrm{5}\:\:\:\:\:\:\left(\mathrm{9}\right) \\ $$$$\mathrm{3}+\mathrm{4}+\mathrm{4}\:\:\:\:\:\:\left(\mathrm{10}\right) \\ $$$$\mathrm{4}+\mathrm{5}+\mathrm{2}=\mathrm{2}+\mathrm{4}+\mathrm{5}\:{counted}\:{before} \\ $$$${total}=\mathrm{10} \\ $$

Commented by arcana last updated on 31/Oct/18

can you proof it?

$$\mathrm{can}\:\mathrm{you}\:\mathrm{proof}\:\mathrm{it}? \\ $$

Commented by arcana last updated on 31/Oct/18

x,y,z≠0 sorry

$${x},{y},{z}\neq\mathrm{0}\:\mathrm{sorry} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com