Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 187916 by mustafazaheen last updated on 23/Feb/23

how is solution  y=(cosx)^((3x^2 −1)^e^x  )   (dy/dx)=?

$${how}\:{is}\:{solution} \\ $$$${y}=\left({cosx}\right)^{\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}\right)^{{e}^{{x}} } } \\ $$$$\frac{{dy}}{{dx}}=? \\ $$

Answered by mr W last updated on 23/Feb/23

generally  y=f(x)^(g(x)) =e^(g(x)ln f(x))   y′=f(x)^(g(x)) [g′(x)ln f(x)+((g(x)f′(x))/(f(x)))]    y=(cos x)^((3x^2 −1)^e^x  )   y′=(cos x)^((3x^2 −1)^e^x  ) {[(3x^2 −1)^e^x  ]^, ln (cos x)−(((3x^2 −1)^e^x  sin x)/(cos x))}    =(cos x)^((3x^2 −1)^e^x  ) {[(3x^2 −1)^e^x  (e^x ln (3x^2 −1)+((6xe^x )/(3x^2 −1)))]ln (cos x)−(((3x^2 −1)^e^x  sin x)/(cos x))}    =(cos x)^((3x^2 −1)^e^x  ) {[(3x^2 −1)^e^x  e^x (ln (3x^2 −1)+((6x)/(3x^2 −1)))]ln (cos x)−(((3x^2 −1)^e^x  sin x)/(cos x))}

$${generally} \\ $$$${y}={f}\left({x}\right)^{{g}\left({x}\right)} ={e}^{{g}\left({x}\right)\mathrm{ln}\:{f}\left({x}\right)} \\ $$$${y}'={f}\left({x}\right)^{{g}\left({x}\right)} \left[{g}'\left({x}\right)\mathrm{ln}\:{f}\left({x}\right)+\frac{{g}\left({x}\right){f}'\left({x}\right)}{{f}\left({x}\right)}\right] \\ $$$$ \\ $$$${y}=\left(\mathrm{cos}\:{x}\right)^{\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}\right)^{{e}^{{x}} } } \\ $$$${y}'=\left(\mathrm{cos}\:{x}\right)^{\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}\right)^{{e}^{{x}} } } \left\{\left[\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}\right)^{{e}^{{x}} } \right]^{,} \mathrm{ln}\:\left(\mathrm{cos}\:{x}\right)−\frac{\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}\right)^{{e}^{{x}} } \mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}\right\} \\ $$$$\:\:=\left(\mathrm{cos}\:{x}\right)^{\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}\right)^{{e}^{{x}} } } \left\{\left[\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}\right)^{{e}^{{x}} } \left({e}^{{x}} \mathrm{ln}\:\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}\right)+\frac{\mathrm{6}{xe}^{{x}} }{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}}\right)\right]\mathrm{ln}\:\left(\mathrm{cos}\:{x}\right)−\frac{\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}\right)^{{e}^{{x}} } \mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}\right\} \\ $$$$\:\:=\left(\mathrm{cos}\:{x}\right)^{\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}\right)^{{e}^{{x}} } } \left\{\left[\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}\right)^{{e}^{{x}} } {e}^{{x}} \left(\mathrm{ln}\:\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}\right)+\frac{\mathrm{6}{x}}{\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}}\right)\right]\mathrm{ln}\:\left(\mathrm{cos}\:{x}\right)−\frac{\left(\mathrm{3}{x}^{\mathrm{2}} −\mathrm{1}\right)^{{e}^{{x}} } \mathrm{sin}\:{x}}{\mathrm{cos}\:{x}}\right\} \\ $$

Commented by mustafazaheen last updated on 23/Feb/23

Thanks Mr

$${Thanks}\:{Mr} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com