Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 76232 by Rio Michael last updated on 25/Dec/19

how do we find   ∫_0 ^(π/2)  sinh^(−1) x dx and  ∫_0 ^(π/2) cosh^(−1) xdx

$${how}\:{do}\:{we}\:{find} \\ $$$$\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\:{sinh}^{−\mathrm{1}} {x}\:{dx}\:{and}\:\:\underset{\mathrm{0}} {\overset{\frac{\pi}{\mathrm{2}}} {\int}}\mathrm{cosh}\:^{−\mathrm{1}} {xdx} \\ $$

Commented by mr W last updated on 25/Dec/19

cosh^(−1)  x is defined for x≥1!

$$\mathrm{cosh}^{−\mathrm{1}} \:{x}\:{is}\:{defined}\:{for}\:{x}\geqslant\mathrm{1}! \\ $$

Commented by turbo msup by abdo last updated on 25/Dec/19

let I =∫_0 ^(π/2)  argsh(x)dx  ⇒I =_(argsh(x)=t)    ∫_0 ^(argsh((π/2))) t ch(t)dt  =∫_0 ^(ln((π/2)+(√(1+(π^2 /4)))))  tcht()dt  =_(by parts)   [tsh(t)]_0 ^(ln((π/2)+(√(1+(π^2 /4)))))   −∫_0 ^(ln((π/2)+(√(1+(π^2 /4))))) sh(t)dt  =ln((π/2)+(√(1+(π^2 /4))))(((π/2)+(√(1+(π^2 /4)))−((π/2)+(√(1+(π^2 /4))))^(−1) )/2)  −(1/2)((π/2)+(√(1+(π^2 /4))))+((π/2)+(√(1+(π^2 /4))))^(−1) )

$${let}\:{I}\:=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:{argsh}\left({x}\right){dx} \\ $$$$\Rightarrow{I}\:=_{{argsh}\left({x}\right)={t}} \:\:\:\int_{\mathrm{0}} ^{{argsh}\left(\frac{\pi}{\mathrm{2}}\right)} {t}\:{ch}\left({t}\right){dt} \\ $$$$=\int_{\mathrm{0}} ^{{ln}\left(\frac{\pi}{\mathrm{2}}+\sqrt{\mathrm{1}+\frac{\pi^{\mathrm{2}} }{\mathrm{4}}}\right)} \:{tcht}\left(\right){dt} \\ $$$$=_{{by}\:{parts}} \:\:\left[{tsh}\left({t}\right)\right]_{\mathrm{0}} ^{{ln}\left(\frac{\pi}{\mathrm{2}}+\sqrt{\mathrm{1}+\frac{\pi^{\mathrm{2}} }{\mathrm{4}}}\right)} \\ $$$$−\int_{\mathrm{0}} ^{{ln}\left(\frac{\pi}{\mathrm{2}}+\sqrt{\mathrm{1}+\frac{\pi^{\mathrm{2}} }{\mathrm{4}}}\right)} {sh}\left({t}\right){dt} \\ $$$$={ln}\left(\frac{\pi}{\mathrm{2}}+\sqrt{\mathrm{1}+\frac{\pi^{\mathrm{2}} }{\mathrm{4}}}\right)\frac{\frac{\pi}{\mathrm{2}}+\sqrt{\mathrm{1}+\frac{\pi^{\mathrm{2}} }{\mathrm{4}}}−\left(\frac{\pi}{\mathrm{2}}+\sqrt{\mathrm{1}+\frac{\pi^{\mathrm{2}} }{\mathrm{4}}}\right)^{−\mathrm{1}} }{\mathrm{2}} \\ $$$$\left.−\frac{\mathrm{1}}{\mathrm{2}}\left(\frac{\pi}{\mathrm{2}}+\sqrt{\mathrm{1}+\frac{\pi^{\mathrm{2}} }{\mathrm{4}}}\right)+\left(\frac{\pi}{\mathrm{2}}+\sqrt{\mathrm{1}+\frac{\pi^{\mathrm{2}} }{\mathrm{4}}}\right)^{−\mathrm{1}} \right) \\ $$$$ \\ $$

Answered by mind is power last updated on 25/Dec/19

u=sh^− (x)  by part  ∫sh^− (x)dx=[xsh^− (x)]−∫(x/(√(1+x^2 )))dx  =xsh^− (x)−(√(x^2 +1))+c  sam with ch^− (x)

$$\mathrm{u}=\mathrm{sh}^{−} \left(\mathrm{x}\right) \\ $$$$\mathrm{by}\:\mathrm{part} \\ $$$$\int\mathrm{sh}^{−} \left(\mathrm{x}\right)\mathrm{dx}=\left[\mathrm{xsh}^{−} \left(\mathrm{x}\right)\right]−\int\frac{\mathrm{x}}{\sqrt{\mathrm{1}+\mathrm{x}^{\mathrm{2}} }}\mathrm{dx} \\ $$$$=\mathrm{xsh}^{−} \left(\mathrm{x}\right)−\sqrt{\mathrm{x}^{\mathrm{2}} +\mathrm{1}}+\mathrm{c} \\ $$$$\mathrm{sam}\:\mathrm{with}\:\mathrm{ch}^{−} \left(\mathrm{x}\right) \\ $$

Answered by mr W last updated on 25/Dec/19

∫_0 ^(π/2) sinh^(−1)  x dx  =(π/2)sinh^(−1)  ((π/2))−∫_0 ^(sinh^(−1)  ((π/2))) sinh y dy  =(π/2)sinh^(−1)  ((π/2))−[cosh (sinh^(−1)  (π/2))−1]  =(π/2)ln ((π/2)+(√(1+((π/2))^2 )))+1−(√(1+((π/2))^2 ))  ≈1.075329

$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sinh}^{−\mathrm{1}} \:{x}\:{dx} \\ $$$$=\frac{\pi}{\mathrm{2}}\mathrm{sinh}^{−\mathrm{1}} \:\left(\frac{\pi}{\mathrm{2}}\right)−\int_{\mathrm{0}} ^{\mathrm{sinh}^{−\mathrm{1}} \:\left(\frac{\pi}{\mathrm{2}}\right)} \mathrm{sinh}\:{y}\:{dy} \\ $$$$=\frac{\pi}{\mathrm{2}}\mathrm{sinh}^{−\mathrm{1}} \:\left(\frac{\pi}{\mathrm{2}}\right)−\left[\mathrm{cosh}\:\left(\mathrm{sinh}^{−\mathrm{1}} \:\frac{\pi}{\mathrm{2}}\right)−\mathrm{1}\right] \\ $$$$=\frac{\pi}{\mathrm{2}}\mathrm{ln}\:\left(\frac{\pi}{\mathrm{2}}+\sqrt{\mathrm{1}+\left(\frac{\pi}{\mathrm{2}}\right)^{\mathrm{2}} }\right)+\mathrm{1}−\sqrt{\mathrm{1}+\left(\frac{\pi}{\mathrm{2}}\right)^{\mathrm{2}} } \\ $$$$\approx\mathrm{1}.\mathrm{075329} \\ $$

Commented by mr W last updated on 25/Dec/19

Commented by mr W last updated on 25/Dec/19

I_1 =∫_0 ^(π/2) sinh^(−1)  x dx  I_2 =∫_0 ^(sinh^(−1)  (π/2)) sinh y dy  I_1 +I_2 =(π/2)×sinh^(−1)  (π/2)  I_2  is easier to get than I_1 .

$${I}_{\mathrm{1}} =\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \mathrm{sinh}^{−\mathrm{1}} \:{x}\:{dx} \\ $$$${I}_{\mathrm{2}} =\int_{\mathrm{0}} ^{\mathrm{sinh}^{−\mathrm{1}} \:\frac{\pi}{\mathrm{2}}} \mathrm{sinh}\:{y}\:{dy} \\ $$$${I}_{\mathrm{1}} +{I}_{\mathrm{2}} =\frac{\pi}{\mathrm{2}}×\mathrm{sinh}^{−\mathrm{1}} \:\frac{\pi}{\mathrm{2}} \\ $$$${I}_{\mathrm{2}} \:{is}\:{easier}\:{to}\:{get}\:{than}\:{I}_{\mathrm{1}} . \\ $$

Commented by Rio Michael last updated on 25/Dec/19

thanks

$${thanks} \\ $$

Commented by mr W last updated on 25/Dec/19

i also used this method in Q#76146.

$${i}\:{also}\:{used}\:{this}\:{method}\:{in}\:{Q}#\mathrm{76146}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com