Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 133734 by Abdoulaye last updated on 23/Feb/21

how do we caculate ∫ln(tanx)dx ?

$${how}\:{do}\:{we}\:{caculate}\:\int{ln}\left({tanx}\right){dx}\:? \\ $$

Answered by mathmax by abdo last updated on 24/Feb/21

f(x)=∫_(π/4) ^x ln(tanx)dx ⇒f(x)=_(tanx=t)    ∫_1 ^(tanx) ((ln(t))/(1+t^2 ))dt  =[arctan(t)ln(t)]_1 ^(tanx) −∫_1 ^(tanx) ((arctant)/t)dt  =xln(tanx)−∫_1 ^(tanx)  ((arctan(t))/t)dt we have (arctant)^((1)) =(1/(1+t^2 ))  =Σ_(n=0) ^∞  (−1)^n t^(2n)  ⇒arctan(t)=Σ_(n=0) ^∞ (((−1)^n )/(2n+1))t^(2n+1) +c(c=0) ⇒  ((arctant)/t)=Σ_(n=0) ^∞  (((−1)^n )/(2n+1))t^(2n)  ⇒f(x)=xln(x)−∫_1 ^(tanx) Σ_(n=0) ^∞  (((−1)^n )/(2n+1))t^(2n) dt  =Σ_(n=0) ^∞  (((−1)^n )/(2n+1))[(1/(2n+1))t^(2n+1) ]_1 ^(tanx)   =Σ_(n=0) ^∞ (((−1)^n )/((2n+1)^2 ))(tan^(2n+1) x−1)  =Σ_(n=0) ^∞  (((−1)^n )/((2n+1)^2 ))tan^(2n+1) x−K  (katalan constant)....be continued...

$$\mathrm{f}\left(\mathrm{x}\right)=\int_{\frac{\pi}{\mathrm{4}}} ^{\mathrm{x}} \mathrm{ln}\left(\mathrm{tanx}\right)\mathrm{dx}\:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=_{\mathrm{tanx}=\mathrm{t}} \:\:\:\int_{\mathrm{1}} ^{\mathrm{tanx}} \frac{\mathrm{ln}\left(\mathrm{t}\right)}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} }\mathrm{dt} \\ $$$$=\left[\mathrm{arctan}\left(\mathrm{t}\right)\mathrm{ln}\left(\mathrm{t}\right)\right]_{\mathrm{1}} ^{\mathrm{tanx}} −\int_{\mathrm{1}} ^{\mathrm{tanx}} \frac{\mathrm{arctant}}{\mathrm{t}}\mathrm{dt} \\ $$$$=\mathrm{xln}\left(\mathrm{tanx}\right)−\int_{\mathrm{1}} ^{\mathrm{tanx}} \:\frac{\mathrm{arctan}\left(\mathrm{t}\right)}{\mathrm{t}}\mathrm{dt}\:\mathrm{we}\:\mathrm{have}\:\left(\mathrm{arctant}\right)^{\left(\mathrm{1}\right)} =\frac{\mathrm{1}}{\mathrm{1}+\mathrm{t}^{\mathrm{2}} } \\ $$$$=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\left(−\mathrm{1}\right)^{\mathrm{n}} \mathrm{t}^{\mathrm{2n}} \:\Rightarrow\mathrm{arctan}\left(\mathrm{t}\right)=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{2n}+\mathrm{1}}\mathrm{t}^{\mathrm{2n}+\mathrm{1}} +\mathrm{c}\left(\mathrm{c}=\mathrm{0}\right)\:\Rightarrow \\ $$$$\frac{\mathrm{arctant}}{\mathrm{t}}=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{2n}+\mathrm{1}}\mathrm{t}^{\mathrm{2n}} \:\Rightarrow\mathrm{f}\left(\mathrm{x}\right)=\mathrm{xln}\left(\mathrm{x}\right)−\int_{\mathrm{1}} ^{\mathrm{tanx}} \sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{2n}+\mathrm{1}}\mathrm{t}^{\mathrm{2n}} \mathrm{dt} \\ $$$$=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\mathrm{2n}+\mathrm{1}}\left[\frac{\mathrm{1}}{\mathrm{2n}+\mathrm{1}}\mathrm{t}^{\mathrm{2n}+\mathrm{1}} \right]_{\mathrm{1}} ^{\mathrm{tanx}} \\ $$$$=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{2}} }\left(\mathrm{tan}^{\mathrm{2n}+\mathrm{1}} \mathrm{x}−\mathrm{1}\right) \\ $$$$=\sum_{\mathrm{n}=\mathrm{0}} ^{\infty} \:\frac{\left(−\mathrm{1}\right)^{\mathrm{n}} }{\left(\mathrm{2n}+\mathrm{1}\right)^{\mathrm{2}} }\mathrm{tan}^{\mathrm{2n}+\mathrm{1}} \mathrm{x}−\mathrm{K}\:\:\left(\mathrm{katalan}\:\mathrm{constant}\right)....\mathrm{be}\:\mathrm{continued}... \\ $$

Commented by Abdoulaye last updated on 24/Feb/21

thank  please what  katalan canstant?

$${thank} \\ $$$${please}\:{what}\:\:{katalan}\:{canstant}? \\ $$

Commented by Dwaipayan Shikari last updated on 24/Feb/21

Σ_(n=0) ^∞ (((−1)^n )/((2n+1)^2 ))=1−(1/3^2 )+(1/5^2 )−(1/7^2 )+....=G   (Catalan′s constant)

$$\underset{{n}=\mathrm{0}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} }{\left(\mathrm{2}{n}+\mathrm{1}\right)^{\mathrm{2}} }=\mathrm{1}−\frac{\mathrm{1}}{\mathrm{3}^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{5}^{\mathrm{2}} }−\frac{\mathrm{1}}{\mathrm{7}^{\mathrm{2}} }+....={G}\:\:\:\left({Catalan}'{s}\:{constant}\right) \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com