Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 197275 by uchihayahia last updated on 12/Sep/23

   how do i prove this, help please.   ∣((x^2 −2x−3)/(x^2 +2x+4))∣≤(5/3),∣x∣≤2

$$ \\ $$$$\:{how}\:{do}\:{i}\:{prove}\:{this},\:{help}\:{please}. \\ $$$$\:\mid\frac{{x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{3}}{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{4}}\mid\leqslant\frac{\mathrm{5}}{\mathrm{3}},\mid{x}\mid\leqslant\mathrm{2} \\ $$$$ \\ $$$$ \\ $$

Answered by AST last updated on 12/Sep/23

Observe that A=x^2 +2x+4>0 for all x as it has  no positive roots  (dA/dx)=0 at x=−1⇒min(A)=3⇒∣x^2 +2x+4∣≥3..(i)  ∣P∣=∣−P∣⇒∣x^2 −2x−3∣=∣−x^2 +2x+3∣  (dP/dx)=0 at x=1⇒max(P)=4  But at x=−2; P=−5  ⇒when ∣x∣≤2(−2≤x≤2) ∣−x^2 +2x+3∣≤5...(ii)  ⇒^? ∣((x^2 −2x−3)/(x^2 +2x+4))∣=∣((−x^2 +2x+3)/(x^2 +2x+4))∣≤(5/3)  (but equality cannot hold,since (i)and(ii) occur  at different points), so question is not correct

$${Observe}\:{that}\:{A}={x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{4}>\mathrm{0}\:{for}\:{all}\:{x}\:{as}\:{it}\:{has} \\ $$$${no}\:{positive}\:{roots} \\ $$$$\frac{{dA}}{{dx}}=\mathrm{0}\:{at}\:{x}=−\mathrm{1}\Rightarrow{min}\left({A}\right)=\mathrm{3}\Rightarrow\mid{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{4}\mid\geqslant\mathrm{3}..\left({i}\right) \\ $$$$\mid{P}\mid=\mid−{P}\mid\Rightarrow\mid{x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{3}\mid=\mid−{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{3}\mid \\ $$$$\frac{{dP}}{{dx}}=\mathrm{0}\:{at}\:{x}=\mathrm{1}\Rightarrow{max}\left({P}\right)=\mathrm{4} \\ $$$${But}\:{at}\:{x}=−\mathrm{2};\:{P}=−\mathrm{5} \\ $$$$\Rightarrow{when}\:\mid{x}\mid\leqslant\mathrm{2}\left(−\mathrm{2}\leqslant{x}\leqslant\mathrm{2}\right)\:\mid−{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{3}\mid\leqslant\mathrm{5}...\left({ii}\right) \\ $$$$\overset{?} {\Rightarrow}\mid\frac{{x}^{\mathrm{2}} −\mathrm{2}{x}−\mathrm{3}}{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{4}}\mid=\mid\frac{−{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{3}}{{x}^{\mathrm{2}} +\mathrm{2}{x}+\mathrm{4}}\mid\leqslant\frac{\mathrm{5}}{\mathrm{3}} \\ $$$$\left({but}\:{equality}\:{cannot}\:{hold},{since}\:\left({i}\right){and}\left({ii}\right)\:{occur}\right. \\ $$$$\left.{at}\:{different}\:{points}\right),\:{so}\:{question}\:{is}\:{not}\:{correct} \\ $$

Commented by AST last updated on 12/Sep/23

Commented by uchihayahia last updated on 13/Sep/23

i′m sorry, but i checked geogebra   and the the statement is true

$${i}'{m}\:{sorry},\:{but}\:{i}\:{checked}\:{geogebra} \\ $$$$\:{and}\:{the}\:{the}\:{statement}\:{is}\:{true} \\ $$

Commented by AST last updated on 13/Sep/23

Screenshot? At what point does equality hold?

$${Screenshot}?\:{At}\:{what}\:{point}\:{does}\:{equality}\:{hold}? \\ $$

Commented by uchihayahia last updated on 13/Sep/23

$$ \\ $$

Commented by uchihayahia last updated on 13/Sep/23

i don′t know why i can′t sent an image   always get blank

$${i}\:{don}'{t}\:{know}\:{why}\:{i}\:{can}'{t}\:{sent}\:{an}\:{image} \\ $$$$\:{always}\:{get}\:{blank} \\ $$

Commented by AST last updated on 13/Sep/23

What point does equality hold?

$${What}\:{point}\:{does}\:{equality}\:{hold}? \\ $$

Commented by uchihayahia last updated on 13/Sep/23

 same but the upper bound is (5/4),   isn′t it true to say (5/4)≤(5/3)   ∣f(x)∣≤(5/3) is true

$$\:{same}\:{but}\:{the}\:{upper}\:{bound}\:{is}\:\frac{\mathrm{5}}{\mathrm{4}}, \\ $$$$\:{isn}'{t}\:{it}\:{true}\:{to}\:{say}\:\frac{\mathrm{5}}{\mathrm{4}}\leqslant\frac{\mathrm{5}}{\mathrm{3}} \\ $$$$\:\mid{f}\left({x}\right)\mid\leqslant\frac{\mathrm{5}}{\mathrm{3}}\:{is}\:{true} \\ $$

Commented by AST last updated on 13/Sep/23

(5/4)<(5/3);(5/4)≠(5/3)  ∣f(x)∣<(5/3) is different from ∣f(x)∣≤(5/3) because  equality never holds in the former, while   equality holds in the latter.

$$\frac{\mathrm{5}}{\mathrm{4}}<\frac{\mathrm{5}}{\mathrm{3}};\frac{\mathrm{5}}{\mathrm{4}}\neq\frac{\mathrm{5}}{\mathrm{3}} \\ $$$$\mid{f}\left({x}\right)\mid<\frac{\mathrm{5}}{\mathrm{3}}\:{is}\:{different}\:{from}\:\mid{f}\left({x}\right)\mid\leqslant\frac{\mathrm{5}}{\mathrm{3}}\:{because} \\ $$$${equality}\:{never}\:{holds}\:{in}\:{the}\:{former},\:{while}\: \\ $$$${equality}\:{holds}\:{in}\:{the}\:{latter}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com